
Real-time Identification and Avoidance of Simultaneous Static and Dynamic
Obstacles on Point Cloud for UAVs Navigation⋆

Han Chena, Peng Lub,∗

aDepartment of Aeronautical and Aviation Engineering, Hong Kong Polytechnic University, Hong Kong, China.
bDepartment of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.

Abstract

Avoiding hybrid obstacles in unknown scenarios with an efficient flight strategy is a key challenge for unmanned aerial
vehicle applications. In this paper, we introduce a more robust technique to distinguish and track dynamic obstacles
from static ones with only point cloud input. Then, to achieve dynamic avoidance, we propose the forbidden pyramids
method to solve the desired vehicle velocity with an efficient sampling-based method in iteration. The motion primitives
are generated by solving a nonlinear optimization problem with the constraint of desired velocity and the waypoint.
Furthermore, we present several techniques to deal with the position estimation error for close objects, the error for
deformable objects, and the time gap between different submodules. The proposed approach is implemented to run
onboard in real-time and validated extensively in simulation and hardware tests, demonstrating our superiority in
tracking robustness, energy cost, and calculating time.

Keywords: Motion planning, UAVs, Point cloud, Dynamic environment

Figure 1: The composed image of one of the hardware flight tests. The drone takes off from the right side, and the goal is located at the left
side, denoted by a green dot. The numbers mark the corresponding frames, increasing with time.

1. Introduction

In unknown and chaotic environments, unmanned aerial
vehicles (UAVs), especially quadcopters always face rapid
unexpected changes, while moving obstacles pose a greater
threat than static ones. To tackle this challenge, the tra-
jectory planner for UAVs needs to constantly and quickly
generate collision-free and feasible trajectories in different

⋆This project is supported by the seed funding for strategic inter-
disciplinary research scheme of the University of Hong Kong

∗Corresponding author
Email addresses: stark.chen@connect.polyu.hk (Han Chen),

lupeng@hku.hk (Peng Lu)

scenarios, and its response time is required to be as short as
possible. In addition, the optimality of the motion strate-
gies should also be considered to save the limited energy
of quadrotors.

Most existing frameworks that enable drones to gen-
erate collision-free trajectories in completely unknown en-
vironments only take into consideration stationary obsta-
cles. However, as quadrotors often fly at low altitudes,
they are faced with various moving obstacles such as vehi-
cles and pedestrians on the ground. One primary solution
to avoid collision is to raise flight altitude to fly above all
the obstacles. This method is not feasible for some in-
door applications, because the flight altitude is limited in

Preprint submitted to Robotics and Autonomous Systems April 9, 2022

Figure 2: The composite picture of the simulation in Gazebo for the
process that the drone avoids static and dynamic obstacles. 5 screen-
shots are used for composition and the cut time interval is fixed to
0.7 seconds. The line with an arrowhead shows the moving direc-
tion and the numbers mark the corresponding frame, the numbers
increase over time. The yellow line is generated by the method in
this paper, while the red line is by the static planning method.

narrow indoor space, and the drones are often requested
to interact with humans as well. Another solution is to
assume all detected obstacles as static. But this method
cannot guarantee the safety of the trajectory [1], consider-
ing measurement errors from the sensors and unmissable
displacement of the dynamic obstacles.

As shown in Figure 2, the collision may happen if the
motion information of obstacles is ignored (the red line).
Therefore, a more efficient and safer way to avoid moving
obstacles is to predict and consider the obstacles’ position
in advance based on the velocity, which can avoid detours
or deadlock on some occasions.

To fly in dynamic scenes for micro aerial platforms, we
propose a complete system in this paper, composed of a
position and velocity estimator for moving obstacles, an
upper-level planner to obtain the desired velocity, and a
motion planner to generate final motion primitives. Con-
sidering the limited computation resource and demands for
low cost, all the computation involved should be light and
do not require high-precision sensor data. For the percep-
tion of dynamic obstacles, the dynamic ones are identified
from static ones by clustering and comparing the displace-
ment from two point cloud data frames. An RGB-D cam-
era is the only sensor utilized to obtain the point cloud.
First, we set up a Kalman filter for each dynamic obsta-
cle for tracking and output more accurate and continuous
estimating results. The feature vector for each obstacle is
adopted to improve the obstacle matching accuracy and
robustness, thus the dynamic obstacle tracking and po-
sition and velocity estimating performance are improved
compared to the related existing works. In addition, we
introduce the track point to reduce the displacement esti-
mation error involved by the self-occlusion of the obstacle.

Then, with the estimated position and velocity of ob-
stacles and the current states and kinodynamic limitations
of a real vehicle, the forbidden pyramids method is applied

to plan the desired velocity to avoid obstacles. The de-
sired velocity is obtained from a sampling-based method
in the feasible space, and the sampled velocity with the
minimal acceleration cost is chosen. Finally, the motion
primitives are efficiently solved from a well-designed non-
linear optimization problem, where the desired velocity is
the constraint. For navigation tasks, the proposed velocity
planning method is also flexible to combine with most path
planning algorithms for static environments, giving them
the ability to avoid dynamic obstacles. The waypoint in
the path acts as the trajectory endpoint constraints at a
further time horizon. In this paper, we test it with our
former proposed waypoint planning method heuristic an-
gular search (HAS) [2] to complete the system and con-
duct the flight tests. The safety and the lower acceleration
cost of this method can be verified by the data from flight
tests. The computational efficiency of the whole system
also shows great advantages over state-of-the-art (SOTA)
works [3]-[4].

In summary, the main contributions of the paper are
as follows:

• The feature vector is introduced to help match the
corresponding obstacle in two point cloud frames.
It is proved to be more robust than existing works
that match the obstacles with only position infor-
mation predicted by the Kalman filter. The neigh-
bor frame overlapping and ego-motion compensation
techniques are further introduced to reduce the esti-
mating errors of the obstacle’s position.

• To compensate for the resultant displacement esti-
mation error from the self-occlusion of obstacles, the
object track point is proposed.

• Based on the relative velocity, the forbidden pyra-
mids method is designed to efficiently plan the safe
desired velocity to avoid both dynamic and static
obstacles. The various time gaps which may cause
control lag error are also well compensated.

• We integrate those proposed methods and a path
planning method into a complete quadrotor system,
demonstrating its reliable performance in flight tests
as shown in Figure 1. Also, the code is open-source
for the community’s reference1.

2. Related work

At present, there are many methods for path planning
and obstacle avoidance in static environments. Although
some researchers have published their safe planning frame-
work for UAVs in an unknown static scenario, it is a more
complex problem for a UAV with a single depth camera
flying in an unknown environment with dynamic obstacles.

1https://github.com/arclab-hku/dynamic navigation

2

For identifying and tracking moving obstacles from the
environment, most researchers employ the raw image from
the camera and mark the corresponding pixels before mea-
suring the depth. The semantic segmentation network
with a moving consistency check method based on images
can distinguish the dynamic objects [5]. Also, a block-
based motion estimation method to identify the moving
obstacle is used in [6], but the result is poor if the back-
ground is complex. Some work [7]-[8] segment the depth
image and regard the points with similar depth belong to
one object. But such methods cannot present the dynamic
environment accurately because static and dynamic obsta-
cles are not classified. If only human is considered as mov-
ing obstacle, the human face recognition technology can
be applied [9]. However, the above-mentioned works do
not estimate the obstacle velocity and position. A multi-
purpose approach is proposed in [10], which jointly esti-
mates the camera position, stereo depth, and object de-
tections, and tracks the trajectories. Some works adopt
feature-based vision systems to detect dynamic objects
[11]-[12], which require dense feature points. Also, detector-
based or segmentation-network-based methods can work
well in predefined classes such as pedestrians or cars [13].
However, they cannot handle generic environments. Con-
sidering the limited resource of the onboard microcom-
puter, the above image-based methods are computation-
expensive and thus not able to run in real-time.

Based on the point cloud data, it is also possible to
estimate the moving obstacles’ position and velocity in
the self-driving cars [14]-[15]. However, they all rely on
high-quality point clouds from LiDAR sensors and power-
ful GPUs to detect obstacles from only predefined classes.
To enhance the versatility, tracking point clusters with the
global feature has been proved a practical idea in simple
environments [16]. As for the point cloud of a depth cam-
era, the existing works are rare and they all match the ob-
stacle by only the center position of obstacles, depending
on the Kalman filter to predict the position of dynamic ob-
stacles from past to present. However, this may fail when
the predicted position of one obstacle is close to other ob-
stacles at present. Varying from them, we propose the
feature vector for each obstacle to tackle this challenge,
and the matching robustness and accuracy are improved
a lot. Our method also can be run at a higher frequency
with low computational power. Event cameras can dis-
tinguish between static and dynamic objects and enable
the drone to avoid the dynamic ones in a very short time
[17]. However, the event camera is expensive for low-cost
UAVs, and the high-quality depth information of the ob-
stacle may also rely on another depth camera because the
generated events are sparse [18].

In terms of the avoidance of moving obstacles for nav-
igation tasks, the majority of research works are based
on the applications of ground vehicles. The forbidden ve-
locity map [19] is designed to solve out all the forbidden
2D velocity vectors and they are represented as two sepa-
rate areas in the map. The artificial potential field (APF)

method can avoid the moving obstacles by considering
their moving directions [20]-[21]. For UAVs, the model pre-
dictive control (MPC) method is tested, but the time cost
is too large for real-time flight [3]. The probabilistic safety
barrier certificates (PrSBC) define the space of admissi-
ble control actions that are probabilistically safe, which is
more compatible for multi-robot systems [22]. Recently,
some global planners for UAV navigation in crowded dy-
namic environment are proposed [23]-[24]. However, the
states of all obstacles are known, they are not suitable for
a fully autonomous aerial platform. [4] utilizes the kinody-
namic A* algorithm to find a feasible initial trajectory first
and the parameterized B-spline is used to optimize the tra-
jectory from the gradient. However, it requires dense sam-
ples along the trajectory in the optimization problem, and
the object function composes the integration of the whole
trajectory. Our motion optimization method is more effi-
cient in computation.

3. Technical approach

Our proposed framework is composed of two submod-
ules that run parallelly and asynchronously: the obstacle
classifier and motion state estimator (section 3.1 & 3.2)
and the waypoint and motion planner (section 4.1 & 4.2).
The additional technical details for improving the accu-
racy of dynamic perception are introduced in section 3.3.
Figure 3 illustrates the whole framework, including the
important message flowing between the submodules.

3.1. Obstacle tracking

The raw point cloud is first filtered to remove the noise
and converted into earth coordinate E−XYZ. The details
about the filter are in section 5. We use Pclt1 and Pclt2
to denote two point cloud frames from the sensor at the
former timestamp t1 and the latest timestamp t2 respec-
tively. t2 − t1 = dt and dt > 0. The time interval dt is
set to be able to make the displacement of the dynamic
obstacles obvious enough to be observed, while maintain-
ing an acceptable delay to output the estimation results.
Pclt1 and Pclt2 are updated continuously while the sensor
is operating. To deal with the movement of the camera be-
tween t1 and t2, Pclt2 is filtered, only keeping the points
in the overlapped area of the camera’s FOVs at t1 and t2
[4]. The newly appeared obstacles in the latest frame are
removed, so only the obstacles appear in both of the two
point cloud frames are further analyzed. Pclt1 and Pclt2
are clustered into individual objects using density-based
spatial clustering of applications with noise (DBSCAN)
[25], resulting in two sets of clusters OB1 = {ob11, ob12, ...}
and OB2 = {ob21, ob22, ...}. Then, matching the two clus-
ters ob2k ∈ OB2 and ob1j ∈ OB1 corresponding to the
same obstacle is necessary before the dynamic obstacle
identification.

At the time when we obtain the first frame of Pclt2 ,
a list of Kalman filters with the constant velocity model

3

Figure 3: The proposed system for the autonomous navigation in dynamic environments. The positioning can be done by the outer motion
capture system or onboard VIO toolkit.

is initialized for each cluster (obstacle) in OB2. The posi-
tion and velocity are updated after the obstacle is matched
and the observation values are obtained. To match the
obstacle, we preliminarily sort out the two clusters that
satisfies the condition ∥pos(ob2k)− pos(ob1j)∥2 < dm. dm
is the distance threshold. pos() ∈ R3 gives the obstacle
position when the input cluster is from the latest frame
Pclt2 , while it returns the predicted position at t2 by the
corresponding Kalman filter of the cluster from Pclt1 [4].
It is designed to associate current clusters to the forward
propagated Kalman filters rather than clusters in the pre-
vious frame. If we cannot find an ob1j for ob2k there, we
skip it and turn to the next cluster (k ← k + 1, k is the
cluster index). For each Kalman filter, it is also necessary
to assign a reasonable maximal propagating time tkf be-
fore being matched with a new observation. Because the
camera FOV is narrow, we hope to predict the clusters
which just move out of the FOV for safety consideration,
and they are assumed to continue to move at their lat-
est updated velocity in a short period. A Kalman filter is
deleted together with its tracking history if it has not been
matched for over tkf .

Figure 4: The left figure shows a situation that two obstacles are
mismatched. The predicted cluster of obstacle 1 is closer than the
predicted cluster 2 to the current cluster of obstacle 2. By comparing
the feature vector, the correct predicted cluster for obstacle 2 can be
matched for the current cluster, as shown in the right figure.

In the related works [4, 26], matching the clusters in
two frames as the same object is based only on the center
position. However, it may fail when obstacles are getting
close, as shown in Figure 4. To improve the matching ro-

bustness, we design a novel technique based on the feature
vector to help match the clusters. The feature vector is
composed of several statistic characters of a point cluster
with aligned color information from the obstacle, which is
defined as

fte(ob) = [len(ob), V A
P (ob), V (ob),MC(ob), V

A
C (ob)], (1)

where ob denotes any point cluster. len() is the function
that returns the size of the input cluster. V A

P () ∈ R3 re-
turns the position variance of the cluster, and V () returns
the volume of the axis-aligned bounding box (AABB) of
the cluster. MC() ∈ R3 and V A

C () ∈ R3 return the mean
and variance of the RGB value of points. The idea is: if
there is not a significant difference in the shape and color
of the two point clusters extracted from two timely close
point cloud frames respectively, then they are commonly
believed to be the same object. The global features for
each obstacle are very cheap to calculate and proved to be
effective in tests.

At last, the Euclidean distance dfte = ∥fte(ob1j) −
fte(ob2k)∥2 between feature vectors is calculated with each
cluster pair {ob2k, ob1j} that satisfies the position thresh-
old. For each cluster ob2k ∈ OB2, the cluster ob1J ∈ OB1

results in the minimal dfte is matched with it. The feature
vector is normalized to 0-1 since the order of magnitude of
each element varies. We use obm2 ∈ OB2 and obm1 ∈ OB1

to represent any two successfully matched clusters.

3.2. Obstacle Velocity Estimation and Classification

Here, we will introduce the track point which effec-
tively reduces the velocity estimation error compared to
the existing methods.

After the obstacles in two sensor frames are matched
in pairs, the velocity of the obstacle obm2 can be calculated

by vm2 =
−−−→
pm2 pm1 /(t2 − t1), where pm2 and pm1 are the po-

sition of the corresponding obstacle. The obstacles have
certain shapes, they are not points. In the related works,
the mean of the points in each cluster is adopted as the
obstacle position, since it is easy to calculate and close to
the centroid for a common obstacle if we ignore the self-
occlusion. However, due to the self-occlusion, the backside

4

Figure 5: The left figure illustrates the velocity estimation error
caused by the self-occlusion of the obstacle. vobs is the velocity
ground truth. When the obstacle approaches the camera, the visible
part shrink, resulting in the relative displacement between the point
cloud center and obstacle centroid. The track point in the right
figure can reduce the velocity estimation error. The middle part of
the cluster is bounded by the green box.

of the obstacle is invisible, so the mean of points is closer
to the camera than the obstacle centroid. In addition,
the occluded part of a moving obstacle changes when the
relative movement occurs between the camera and obsta-
cle. Thus, the relative position between the position mean
and the real mass center also changes. This will lead to a
wrongly estimated velocity, as shown in Figure 5, the er-
ror is mainly distributed on the Z axis of the camera Zcam

and it is not a fixed error can be estimated. As a conse-
quence, the constant velocity model in the Kalman filters
will no longer hold even for constant velocity obstacles.
For the position estimation of obstacles, the self-occlusion
is not important, considering the visible part only is safe
for obstacle avoidance. But the velocity is the key informa-
tion of moving obstacles in the vehicle velocity planning.
Therefore, we propose a method to reduce this velocity
estimation error by choosing the appropriate track point
for the matched pair of clusters, as illustrated in the right
figure of Figure 5.

For a moving obstacle in translational motion, the clos-
est part to the camera is believed not to be self-occluded
in obm2 and obm1 . In addition, the middle part of the clus-
ter is close to the centroid of the common obstacles, so the
rotational movement is weak in this part. Thus, we only
use the center point p̂m2 and p̂m1 of the closest Nc points to
the camera in the middle part of the cluster obm2 and obm1
to estimate the displacement. p̂m2 and p̂m1 are named as
the track point. Here the distance to the camera is mea-
sured only along Zcam. The middle part of the cluster is
divided in the projection plane corresponding to the depth
image. The bounding box for the middle part is shrunk
from the AABB of the obstacle to the center proportion-
ally. The shrinking scale factor is α (α < 1). Considering
the common obstacles usually performs slow rotation, and
the time gap dt is small, we can neglect the influence on
the closest part caused by rotation in the displacement es-
timation. To update the Kalman filter, pm2 (the mean of
current cluster) is still the observed position, but the veloc-

ity observation is v̂m2 =
−−−→
p̂m1 p̂m2 /(t2 − t1). The classification

for static and dynamic obstacle is done by comparing the
velocity magnitude with a pre-assigned threshold vdy, i.e.
∥v̂m2 ∥2 > vdy indicates a moving obstacle. If an obstacle is
classified as static in Sc consecutive times, the correspond-
ing Kalman filter is abandoned and the static point cluster
is forwarded for map fusion.

The Kalman filter for one cluster is detailed with

x̂−
t = Ftx̂t−1 +Btat−1, (2)

P−
t = FtPt−1F

T
t +Q, (3)

Kt = P−
t HT

(
HP−

t HT +R
)−1

, (4)

Pt = (I −KtH)P−
t , (5)

x̂t =

{
x̂−
t +Kt

(
xt −Hx̂−

t

)
(found dynamic obstacle),

x̂−
t (no dynamic obstacle),

(6)

xt =

[
pm2
v̂m2

]
, Ft =

[
1 ∆t
0 1

]
, Bt =

[
∆t2

2
∆t

]
, (7)

where R, H, Q are the observation noise covariance ma-
trix, observation matrix, and process noise covariance ma-
trix respectively. The superscript − indicates a matrix is
before being updated by the Kalman gain matrix Kt, ap-
plicable for the state matrix x̂t and the posterior error co-
variance matrix Pt. The subscripts t and t−1 distinguish
the current and the former step of the Kalman filter. Ft is
the state transition matrix and Bt is the control matrix. xt

is composed of the observation of the obstacle position and
velocity, and ˆ marks the filtered results for xt. x̂t equals
to the predicted state x̂−

t if no dynamic obstacle is caught.
x̂−
t is also utilized as the propagated cluster state in the

obstacle matching introduced above. ∆t is the time inter-
val between each run of the Kalman filter. In the current
stage, we assume the moving obstacle performs uniform
motion between t1 and t2, at−1 = 0.

We summarize our proposed dynamic environment per-
ception method in Algorithm 1.

3.3. Ego-motion compensation and neighbor data overlap-
ping

To improve the estimation accuracy, we notice the time
gap between the latest point cloud message from the cam-
era and the vehicle state message from the IMU in the
flight controller, which is an important detail ignored in
the existing works. A constant acceleration motion model
is adopted to describe the vehicle motion in a short period,
and the ego-motion compensation can be done with

p̂cam = pcam + vcamtgap +
1

2
acamt2gap, (8)

to result in the compensated camera pose p̂cam. pcam, vcam
and acam ∈ R2×3 are the pose, velocity and acceleration
of the camera obtained from raw data (translational and
rotational motion), translated from the installation matrix

5

Algorithm 1 Dynamic environment perception

1: while true: do
2: Obtain Pclt1 , Pclt2 from the point cloud filter, clus-

ter them to OB1, OB2

3: if it is the first loop then
4: Initialize the Kalman filters for each cluster in

OB2

5: end if
6: Predict the position of former clusters with the

Kalman filters
7: for ob2k in OB2 (k is the iteration number): do
8: Match ob2k with the predicted clusters
9: if successfully match the clusters: then

10: Estimate the velocity of ob2k with the paired
ob1j

11: Classify it as static or dynamic and record the
class as the history together with the corre-
sponding Kalman filter

12: if the cluster marked as static for Sc consecu-
tive times: then

13: Delete the corresponding Kalman filter, sub-
mit ob2k for map fusion

14: else if ob2k is dynamic: then
15: Update the Kalman filter with pm2 and v̂m2
16: end if
17: end if
18: end for
19: if no dynamic obstacle is found: then
20: Update the Kalman filter with the predicted state
21: end if
22: end while

of the camera. tgap is the time gap between the message,
equals to the timestamp of point cloud minus the times-
tamp of vehicle state. As a result, the point cloud can be
converted to E−XYZ more precisely.

For non-rigid moving obstacles, for example, walking
animals (including humans), the body posture is continu-
ously changing. The point cloud deformation may cause
additional position and velocity estimation error of obsta-
cle since the waving limbs of a walking human to inter-
fere with the current estimation measurements. We notice
that when two neighbor frames of point cloud are over-
laid, the point cloud of the human trunk is denser than
the other parts which rotate over the trunk. Then, an ap-
propriate point density threshold of DBSCAN can remove
the points corresponding to the limbs. So the overlapped
point cloud can replace the filtered raw point cloud. For
instance, the wth point cloud frame Pclw is replaced with
Pclw ∪ Pclw−1. p̂cam is also replaced by the mean of the
value from its neighbor data frame, to align with the point
cloud.

4. Motion planning

The motion of the drone is more aggressive for avoid-
ing moving obstacles than flying in a static environment.
To address the displacement of the drone during the time
costed by the trajectory planner and flight controller, posi-
tion compensation is adopted before the velocity planning,
which is another important detail usually not mentioned
in the references. The current position of drone pn is up-
dated by the prediction

p̂n = pn + (tpl + tct + tpm)vn +
1

2
(tpl + tct + tpm)2an, (9)

where tpl is the time cost of the former step of the motion
planner. tct is the estimated fixed responding time for
the flight controller. tpm is the timestamp gap between
UAV pose and current time. In addition, due to the time
cost of obstacle identification and communication delay,
the timestamp on the information of dynamic obstacles is
always later than that of the pose and velocity message of
the drone. Based on the constant velocity assumption, the
obstacle position p̂m2 in the planner at the current time is
predicted and updated as

p̂m2 = pm2 + (tpl + tct + tpm + tdp)v̂
m
2 , (10)

where tdp is the timestamp gap between the UAV pose and
the received dynamic clusters. The dynamic clusters pub-
lished by the perception module share the same timestamp
with the latest point cloud pclt2.

4.1. Velocity planning

This subsection will introduce a novel velocity planning
method based on the relative velocity and the forbidden
pyramids. First, the planner receives the moving clus-
ters and the velocity from the dynamic perception module.
The currently unclassified clusters are also conveyed to the
planner and treated as static obstacles together with the
classified static clusters. In addition, we adopt the map-
ping kit to offer the static environmental information out
of the current FOV, because the FOV of a single camera
is narrow. To tackle the autonomous navigation tasks, the
drone is required to reach the goal position. The desired
velocity of the drone is initialized as v′des, ∥v′des∥2 = vmax

and v′des heads towards the goal. vmax is the maximum
speed constraint. Also, considering the path optimality, a
path planner is usually adopted in the navigation. Thus,
the waypoint wp generated from the planned path is used
to replace the navigation goal if a path planner is required.
Otherwise, wp denotes the navigation goal. wp can be
generated from a guidance law or assigned directly as the
first waypoint in the path to enable the drone to follow
the path. It is a choice to combine the velocity plan-
ning method with the path planning algorithms to adapt
to navigation applications better. Figure 6 illustrates the
collision check by calculating the relative velocity of v′des
towards the obstacles, and if the check fails the velocity

6

re-planning will be conducted. For dynamic obstacles, the
relative velocity equals v′des minus the obstacle velocity.
For static obstacles, the relative velocity is vn itself. If
v′des is checked to be safe, the finally desired velocity vdes
is given by v′des.

Figure 6: Check if the current relative velocities towards each ob-
stacle lies in the forbidden area. In this figure, the relative velocity
towards one dynamic obstacle and one static obstacle all fail the col-
lision check. The forbidden area is the projection area (space) of the
inflated obstacle AABB in the projection plane to the camera. rsafe
is the inflating size.

Figure 7: The left figure explains the velocity planning for multiple
forbidden pyramids. We use a floor plan to better demonstrate the
method. The right figure is a forbidden pyramid for one obstacle in
3D view, four sides of the pyramid result in four proposed relative
velocity vectors. “Unreachable” refers to that a relative velocity is
out of the maximal velocity bound of the drone, which is detailed in
Figure 9.

Then, the velocity re-planning method is explained in
Figures 7-9, the forbidden area (space) is extended to a
pyramid for the 3D case, different from the triangle for
the 2D case. Here, we introduce a hypothesis that the
object in the environment does not have a ring topology,
thus the flight trajectory through a single object is for-
bidden. If the relative velocity lies in the corresponding
forbidden pyramid, four proposed relative velocity vectors
are found by drawing perpendicular lines from the rela-
tive velocity vector perpendicular to the four sides of the
pyramid. They are the samples to be checked later. The
vertical line segments stand for the acceleration cost to
control the vehicle to reach the proposed velocity. For any
cluster, vrel denotes the relative velocity, the five vertices

Figure 8: The feasibility check of the relative velocity for one ob-
stacle, as the supplementary for Figure 7. The proposed relative
velocity is checked if feasible for other moving obstacles. In this fig-
ure, the left proposed relative velocity for obstacle 2 is also feasible
for obstacle 1 (navy blue arrows), while the right one (green arrows)
is not.

Figure 9: The reachable check for the proposed relative velocities.
vobs is moved to start from pn, and the endpoint is the center of the
spherical reachable set. The possible relative velocity constrained by
vmax towards this obstacle is included in this set. Only the relative
velocity vectors in the reachable set are chosen.

of the forbidden pyramid are

{p̂n(x0, y0, z0), vt1(x1, y1, z1), ..., vt4(x4, y4, z4)}. (11)

The acceleration cost aci of the proposed relative velocity
vectors vpi (i ∈ {1, 2, 3, 4}) can be calculated by solving
the 3D geometric equations, as follows:

Cp =
−−−→
p̂nvt1 ×

−−−→
p̂nvt2, (12)

cpd = −Cpp̂Tn , (13)

aci =
|Cp(vrel + p̂n)

T + cpd|
∥Cp∥2

, (14)

vpi = vrel − CpC
p(vrel + p̂n)

T + cpd
∥Cp∥22

. (15)

In (12)-(15), triangle {p̂n, vt1, vt2} is taken as the example,
Cp[x, y, z]T + cpd = 0 is the corresponding plane equation,
p̂n is the common vertex of all the 4 triangles.

7

Obviously, for only one obstacle, the desired relative
velocity with the minimal cost is from the four proposed
ones. For multiple obstacles and forbidden pyramids, the
desired relative velocity is chosen by comparing the fea-
sibility, reachability, and cost. Among all the proposed
relative velocity vectors, the one checked to be feasible
and reachable and with the minimal cost is selected (vrdes),
and the desired vehicle velocity vdes = vrdes + vobs. vobs
is the velocity for the corresponding obstacle. Although
the globally optimal solution for acceleration cost cannot
be guaranteed within the samples, the computation com-
plexity is greatly reduced compared to solving the optimal
solution. We use the inflated bounding box because the
character radius of the vehicle ruav can not be neglected.

The feasibility check is to guarantee vdes is safe for all
obstacles, not for only one of them, which is described in
Figure 8. Besides the feasibility check, vdes should satisfy
the maximum speed constraints vmax. We introduce the
reachable set for the relative velocity vector to check if the
proposed relative velocity vpi (i ∈ {1, 2, 3, 4}) is reachable,
as Figure 9 indicates. For the relative velocity towards one
obstacle, vrel = vn − vobs always hold. vrel is the current
relative velocity towards the obstacle, vobs is the obstacle
velocity.

In addition, the lag error of the velocity planning caused
by the time cost to reach the desired velocity is also con-
siderable. The relative displacement between the moving
obstacle and vehicle during this time gap should be es-
timated, because the forbidden pyramid is also directly
related to the relative position. We can assume the solved
jerk Jn is very close to its boundary Jmax, because the
time cost tv is minimized in the optimization problem (20).
Thus, the time cost is estimated as

vn + antv +
1

2
Jnt

2
v = vdes

⇒ tv = min
tv
{∥2(vdes − vn − antv)

t2v
∥∞ = Jmax ∧ tv > 0},

(16)
and the displacement of the vehicle and obstacle is calcu-
lated by

duav = vntv +
1

2
ant

2
v +

1

6
Jnt

3
v, (17)

dobs = v̂m2 tv. (18)

At last, the estimated displacement duav and dobs are
added to the position after vdes is obtained, and a new vdes
is planned in iteration until it is checked to be safe. The
accurate time cost tv can only be determined after solv-
ing the motion optimization problem. However, involving
the optimization problem in the iteration will be time-
consuming, so we use a closed-form solution as the ap-
proximate value. To speed up the convergence, the safety
radius is inflated by a small value ϵ (equivalent to the tol-
erance in the safety check) to calculate vpi:

rsafe = ruav + ϵ (ϵ > 0). (19)

In a situation where the obstacles are too dense, the
forbidden area may cover all the space around the vehi-
cle. We first sort all the clusters with the increasing order
of distance to pn, the farther obstacles are considered less
threatening for the drone. Then, the last j clusters are
excluded, j is the iteration number increasing from 0. Al-
gorithm 2 reveals the process of velocity planning. As a
result, the vehicle can always quickly plan the velocity to
avoid static and dynamic obstacles and follow the path to
meet the different task requirements.

Algorithm 2 Velocity planning

1: v′des ← vmax

−−−→
p̂nwp

|wp − p̂n|
2: if v′des is unsafe (Figure 6): then
3: j ← 0
4: Sort the clusters with the distance to pn
5: while vdes is not found: do
6: Remove the last j clusters from original sequence
7: Get all the feasible relative velocity vectors for the

remained clusters
8: if feasible and reachable relative velocity exist:

then
9: Choose vrdes with the minimal acceleration cost,

and vdes ← vrdes + vobs
10: end if
11: j ← j + 1
12: end while
13: repeat
14: p̂n ← p̂n + duav, p̂

m
2 ← p̂m2 + dobs

15: Repeat line 7-10 with updated forbidden pyramids
16: until vdes is safe
17: else
18: vdes ← v′des
19: end if

4.2. Motion planning

After the desired velocity vdes is obtained, it appears as
the constraint in the motion planning and will be reached
in a short time. The waypoint constraints wp is also con-
sidered to follow the path, as shown in Figure 10.

The optimization problem to obtain motion primitives
is constructed as

min
Jn,tv

η1tv + η2dtrj

s.t. an+1 = an + Jntv,

vdes = vn + antv +
1

2
Jnt

2
v,

dtrj =
∥
−−−−→
p̂npend ×−−−−→wppend∥2
|wp − p̂n|

,

pend = p̂n + vnKtv +
1

2
an(Ktv)

2 +
1

6
Jn(Ktv)

3,

0 < tv, ∥an+1∥2 ≤ amax, ∥Jn∥2 < Jmax, (20)

8

where the jerk of the vehicle Jn is the variable to be op-
timized. tv is the time required to reach vdes, which is
the variable and the optimization object at the same time.
an+1 and pend are calculated by the kinematic formula.
amax and Jmax are the kinodynamic constraints of accel-
eration and jerk of the vehicle respectively. The velocity
constraint vmax is satisfied in the equality constraint with
vdes. η1, η2 are coefficients. The default values are shown
in Table 1. After the desired trajectory piece is solved, a
default cascade PID controller of PX4 is utilized to track
this trajectory in position, velocity, and acceleration.

Figure 10: The proposed motion planning method. The objective
function is designed to minimize the time cost to reach the desired
velocity and the distance from trajectory endpoint pend to the path
line. The solid yellow line represents the predicted trajectory.

5. Experimental implementation and results

5.1. Point cloud filters

For the dynamic environment perception, filtering the
raw point cloud is necessary, because the obstacle state
estimation is sensitive to the noise. The noise should be
eliminated strictly, even losing a few true object points is
acceptable. The filter has the same structure as our former
work [2], as shown in Figure 11, but the parameters are
different. The distance filter removes the points too far
(≥ 6.5 m) from the camera, the voxel filter keeps only one
point in one fixed-size (0.1 m) voxel, outlier filter removes
the point that does not have enough neighbors (≤ 13) in a
certain radius (0.25 m). Based on such configuration, the
density threshold for DBSCAN is at least 18 points in the
radius of 0.3 m. These metrics are tuned manually dur-
ing extensive tests on the hardware platform introduced
in the next subsection, to balance the point cloud quality
and the depth detection distance. They are proved satis-
factory for obstacle position estimation. The point cloud
filtering also reduces the message size by one to two or-
ders of magnitude, so the computation efficiency is much
improved, while the reliability of the collision check is not
affected.

However, when the drone performs an aggressive ma-
neuver, the pose estimation of the camera (including the
ego-motion compensation) is not accurate enough for dy-
namic obstacle perception. To solve this problem, we pro-
pose a practical and effective measurement: The filtered
point cloud is accepted only when the angular velocity of
the three Euler angles of the drone is within the limit ωmax.

5.2. Map building

In our implementation, we adopt a simple method to
store the static points in a list (“mapping kit” in Fig. 3),

Figure 11: The filtering process for the raw point cloud.

and visualize the points as the point cloud map. After the
first dynamic obstacle identification, we push all the static
clusters into a list for initialization. When a new static
point cluster is found afterward, we compare the distance
between the new static cluster center with the existing
clusters’ centers in the list. If the new cluster is very close
to the existing static clusters, it will not be added to the
list to avoid duplicating and saving the RAM of the on-
board computer. In the velocity planning, only the static
clusters in the list in the range of 6.5 m (the cut-off depth
of the distance filter) to the vehicle are considered. To
obtain a high-quality map, the existing mapping toolkits
(such as Octomap) are also capable in our system.

5.3. Experimental Configuration

The detection and avoidance of obstacles are tested and
verified in the Robot Operation System (ROS)/Gazebo
simulation environment first and then in the hardware ex-
periment. The drone model used in the simulation is 3DR
IRIS, and the underlying flight controller is the PX4 1.10.1
firmware version. The depth camera model is an Intel Re-
alsense D435i with a resolution of 424*240 (30 fps). For
hardware experiments, we use a self-assembled quadrotor
with a Q250 frame and a LattePanda Alpha 864s with an
Intel m3-8100y processor, other configuration keeps un-
changed. A motion capture system VICON is adopted to
obtain the pose of the drone. Table 1 shows the param-
eter settings for the simulation tests. The supplementary
videos for the tests have been uploaded online23.

Table 1: Parameters for the tests

Parameter Value Parameter Value

Sc 3 tct 0.01 s
vdy 0.3 m/s dt 0.2 s
tkf 0.7 s dm 0.9 m
Nc 12 α 0.5
η1 10 η2 6
K 3 ϵ 0.05 m

amax 6 m/s2 ωmax 1.5 rad/s
Jmax 12 m/s3 vmax 1.5 m/s

5.4. Simulation Test

5.4.1. Dynamic perception module test

First, the accuracy and stability of the estimation method
for the obstacle position and velocity are verified.

2https://youtu.be/1g9vHfoycs0
3https://www.youtube.com/watch?v=5CwFATodSvU

9

In the simulation world depicted in Figure 12(a), there
is one moving ball, two moving human models, and some
static objects. The moving obstacles reciprocate on differ-
ent straight trajectories. The camera is fixed on the head
of the drone, facing forward straightly. Since the point
cloud from the simulated sensor is clean and the noise is
very light, the distance filter threshold is extended to 8 m.
The drone is hovering around the point (−6, 0, 1.2). Fig-
ure 12(b) depicts the visualized estimation results in Rviz.
The Euclidean distance of the feature vectors utilized for
obstacle tracking is illustrated in Figure 13. The estima-
tion numeral results are shown in Figure 14, and they are
compared with the ground truth. The dynamic percep-
tion performance is also compared with SOTA works in
Table 2, where the metrics Multiple Object Tracking Pre-
cision (MOTP) and Multiple Object Tracking Accuracy
(MOTA) are adopted as defined in the work of Bernardin
[27]. MOTP is the average position estimation error in
this test. Only walking or running pedestrians are tested
in Table 2. The second line marked with * is for our
method without using the track point to correct the ve-
locity estimation, and the third line marked with # is for
our method without the neighbor frame overlapping. We
record the point cloud (at 30 Hz) and UAV states data (at
100 Hz) for about 600 s, and repeat the test on the data
5 times to give the average results.

The estimation test results in Gazebo simulation demon-
strate that our estimation algorithm is practical for dy-
namic obstacle avoidance. In addition, our method effi-
ciently improves the estimation accuracy and robustness in
the clustered environment. For our MOTA, it is composed
of a false negatives rate fn = 6.7% (covering non-detected
dynamic objects and dynamic objects erroneously classi-
fied as static or uncertain), a false positives rate fp = 6.9%
(static objects misclassified as dynamic), and a mismatch
rate fm = 2.1%.

Table 2: Obstacle State Estimation Comparison

Method errorvel(m/s) MOTA (%) MOTP

Ours 0.21 84.3 0.15
Ours* 0.29 83.9 0.16
Ours# 0.25 83.6 0.18
[4] 0.37 76.4 0.28
[3] 0.41 70.1 0.30

5.4.2. Motion planning module test

In addition, we compare the motion planning method
with [4] and [28] in Table 3. The metrics amean, vmean,
ltraj and topt stand for the average acceleration, the aver-
age velocity, the average flight trajectory length and the
time cost for the motion optimization part. The time costs
are measured on a laptop computer with an Intel i7-8550U
CPU and 8 GB RAM. Similarly in [4], we consider the
environment with only dynamic obstacles, because the lo-

(a)

(b)

Figure 12: (a): The simulation environment for the moving obstacles’
position and velocity estimation test. (b): The visualized estimation
results in RVIZ, corresponding to (a). Only the forbidden pyramids
for dynamic clusters are visualized. The pedestrians always face their
moving direction. It can be seen that the obstacles are correctly
tracked even though they are very close.

cations and velocities of all obstacles are known and con-
sidered as dynamic in [28]. The obstacles are ellipsoids
with human-like size (0.5×0.5×1.8m) and move at con-
stant velocities, as shown in Figure 15. For each planner,
the drone flies between two points (0, 0, 1.2) and (20, 0, 1.2)
back and forth for 10 times, 20 obstacles with velocities at
1-3 m/s cross this straight path disorderly. The camera
FOV is also considered, and simulated to be 85.2◦ × 58◦

with the maximal sensing depth 8 m. From Table 3 we
conclude that the average acceleration cost of our motion
planning method is smaller because our velocity planning
method considers the minimal acceleration cost in all the
sample velocities for the current time. Also, the comput-
ing time is much shorter thanks to the simple but efficient
object function and constraints, which shows the poten-
tial to avoid faster obstacles. In these tests, our planning
approach produces a longer trajectory because the farther
obstacles are more likely to be ignored when the obstacles
are dense. Only the obstacle close to the drone is consid-
ered sometimes, the trajectory optimality in length from
the global view is weak compared to the compared works,
as they optimize the trajectory with all the obstacles in the
sensing range. In addition, the average speed is smaller be-

10

Figure 13: The box chart of the Euclidean distance of the feature
vector fte() between obstacles from OB1 and OB2. B, W, and R
represent the moving Ball, Walking and Running person in Figure
12 respectively. The distance of the same obstacle is obviously lower
than that of different obstacles, so the obstacles are matched cor-
rectly.

Figure 14: The estimation results of the moving obstacles’ position.
The FOV of the camera is represented with a light green area. The
dotted line is the estimated result, while the solid line is the ground
truth.

cause our velocity planning approach is based on sampling
and the unreachable samples are simply abandoned, the
drone’s movement capability is not fully used.

5.4.3. System test

To test the whole framework for navigation tasks, we
utilize the HAS method [2] as the path planning algorithm
at the front end to generate the waypoint wp for equation
(20). The flight simulation world is revealed in Figure 2
and 12(a), there are four walking or running pedestrians,
one moving ball, and many static pillars and boxes. In
Figure 2, the necessity for estimating the obstacle’s ve-
locity is illustrated: To avoid the moving man which is
at a similar speed to the drone, the aircraft choose to fly
in the “opposite” direction from the man so the threat is
removed easily. If only the static HAS method [2] is uti-
lized in the same situation, the drone decelerates and flies
alongside the man (red line), which is very inefficient and
dangerous.

Figure 15: The simulated test environment for the motion planning
module. The drone flies between the two points for the assigned
times. The red arrows represent the velocity vectors of dynamic
obstacles.

Table 3: Dynamic Planning Comparison

Method amean(m/s2)vmean(m/s) ltraj(m) topt(ms)

Ours 2.96 2.24 25.21 3.15
[4] 3.43 2.37 23.65 8.61
[28] 3.18 2.33 22.96 31.23

5.5. Hardware Test

5.5.1. Perception module evaluation

In the above simulation tests, the proposed perception
module is verified with the simulated depth camera. How-
ever, the noise of the point cloud from a real depth camera
is much more severe. In subsection 5.1, the parameters of
the point cloud filters for the real camera are tuned to
eliminate the ghost points (the points that do not corre-
spond to any real obstacles), but still a few ghost points
remained. Also, the points for real obstacles are not ac-
curate as those in simulation, especially the depth error is
greater for the farther objects. The vehicle state estima-
tion also has a greater error than that in simulation, which
adds additional error when transforming the points from
the body to the earth coordinate. Therefore, some param-
eters for perception should be adjusted before flight tests.
We collect over 430 s data of the raw point cloud (at 30
Hz), raw RGB image (at 30 Hz), and the vehicle states (at
100 Hz) under VICON in different scenarios, and study the
influence on the dynamic obstacle detecting and tracking
performance from the parameters. As a result, vdy and dt
are found to be more influential than other parameters. In
Table 4, we use MOTA (%) to evaluate the performance
under different configurations with the collected data, and
repeat the test 5 times for each configuration. Other met-
rics are discarded since the position and velocity ground
truth of a moving pedestrian are complex to obtain. (a),
(b), (c) in the first row refers to the different test scenarios,
and the scenarios are introduced in Fig 16.

We can conclude from Table 4 that greater vdy and
dt are helpful to suppress the noise and depth error in
obstacle tracking. However, vdy should be much smaller
than the slowest object in the environment to make the

11

Table 4: Obstacle tracking performance under different parameters

vdy(m/s), dt(s) MOTA(a) MOTA(b) MOTA(c)

0.2, 0.2 69.43 65.26 59.68
0.3, 0.2 71.91 67.71 60.26
0.5, 0.2 75.86 71.12 64.11
0.9, 0.2 74.37 70.59 59.14
0.5, 0.1 71.65 68.24 64.87
0.5, 0.3 78.45 76.12 71.36
0.5, 0.5 74.57 69.11 55.73
0.5, 0.7 66.62 62.78 48.83

(a) (b)

Figure 16: The images from the onboard camera of the dynamic
perception test scenarios and the visualized results. Two pedestri-
ans are walking among several boxes and pillars. (a): The camera is
fixed, for MOTA(a). (b): The camera is held by hands and moving
at around 1.5 m/s and 2.5 m/s, for MOTA(b) and MOTA(c) respec-
tively.

Figure 17: The dynamic hardware test environment. The aerial
platform is introduced in the upper right corner. The pedestrian
walks directly through the area while the drone is flying among the
static obstacles.

Figure 18: The corresponding visualized data in RVIZ for the frames
in Figure 1

classification robust to the velocity estimation error. If dt
is too large, due to the limited camera FOV, an object
may be neglected since the continuously observed time is
even shorter than dt. According to the results, we choose
vdy = 0.5 m/s and dt = 0.3 s, other parameters of the
perception module stay unchanged.

5.5.2. Flight test

We set up a hardware test environment as Figure 17,
the drone takes off behind the boxes and then a person
enters the FOV of the camera and walks straight towards
the drone during the flight to test the effectiveness of our
method. In Figure 1, the camera is fixed and takes photos
every 0.33 s during the flight. Eight photos are composed
together. In the first frame the pedestrian appeared, the
orange line shows the trajectory of the drone while the
yellow line is for the person. It can be concluded that the
reaction of the drone is similar to the simulation above.
The visualized data for this hardware test is shown in
Figure 18, the planned velocity and the predicted trajec-
tory react promptly once the moving obstacle appears. In
Figure 19, the gray line is only for the path planning al-
gorithm (HAS), and the blue line represents the whole
planning with Algorithm 2. The gray line has a strong
positive linear correlation with time because the number
of the input points of the collision check procedure deter-
mines the distance calculation times. The blue and red
lines show the irregularity, because the moving obstacle
brings an external computation burden to Algorithm 2,
and the number of moving obstacles has no relation to the
point cloud size. The single-step time cost of our proposed
method (excluding the path planning) is even smaller than
0.01 s, indicating the fast-reacting ability towards moving
obstacles.

At last, we compare our work with SOTA works on the
system level in Table 5. Since most related works differ
significantly from ours in terms of application background
and test platform, for numeral indicators we only compare
the total time cost for reference. The time cost is obtained

12

from the references directly, to compare roughly at orders
of magnitude. The abbreviations stand for: obs (obsta-
cle), cam (camera), UUV (underwater unmanned vehicle),
N/A (not applicable). “N/A” in the sensor type column
refers to the work that gets obstacle information from an
external source and does not include environment percep-
tion. Most works have severe restrictions on the obstacle
type or incompleteness in environment perception, and the
computing time cost is not satisfactory for real-time ap-
plications. Our work has a great advantage in generality
and system completeness, the computing efficiency is also
at the top level.

Figure 19: The time cost for different modules under different filtered
point cloud size.

Table 5: System comparison between different works

Work Sensor type Vehicle Obs limits Time cost
(s)

[29] Sonar UUV dynamic obs 1-2
[20] N/A Robots dynamic obs 0.045-0.13
[16] Cam & Lidar Car N/A 0.1
[9] N/A UAV human 0.2-0.3
[17] Event cam UAV dynamic obs 0.0035
[3] RGB-D cam UAV N/A 0.024
Ours RGB-D cam UAV N/A 0.015

6. Conclusion and future work

In this paper, we present a computationally efficient
algorithm framework for both static and dynamic obsta-
cle avoidance for UAVs based only on point clouds. The
test results indicate our work is feasible and shows great
promise in practical applications.

However, when the speed or angular velocity of the
drone is high, and also because of the narrow FOV of a sin-
gle camera, the dynamic perception becomes significantly
unreliable. In future research, we intend to improve the
robustness of our method in aggressive flights and test it
with different sensors such as lidar.

Acknowledgements

The authors sincerely thank FAST Lab of Zhejiang
University for offering assistance with the experimental

site and assisting staff.

References

[1] J. Chen, T. Liu, S. Shen, Online generation of collision-free
trajectories for quadrotor flight in unknown cluttered environ-
ments, in: 2016 IEEE International Conference on Robotics and
Automation (ICRA), Vol. 2016, 2016, pp. 1476–1483.

[2] H. Chen, P. Lu, Computationally efficient obstacle avoidance
trajectory planner for uavs based on heuristic angular search
method, arXiv preprint arXiv:2003.06136 (2020).

[3] J. Lin, H. Zhu, J. Alonso-Mora, Robust vision-based obstacle
avoidance for micro aerial vehicles in dynamic environments, in:
2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), IEEE, 2020, pp. 2682–2688.

[4] Y. Wang, J. Ji, Q. Wang, C. Xu, F. Gao, Autonomous flights
in dynamic environments with onboard vision, arXiv preprint
arXiv:2103.05870 (2021).

[5] C. Yu, Z. Liu, X.-J. Liu, F. Xie, Y. Yang, Q. Wei, Q. Fei,
Ds-slam: A semantic visual slam towards dynamic environ-
ments, in: 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2018, pp. 1168–1174.

[6] J. Kim, Y. Do, Moving obstacle avoidance of a mobile robot
using a single camera, Procedia Engineering 41 (2012) 911–916.

[7] H. Oleynikova, D. Honegger, M. Pollefeys, Reactive avoidance
using embedded stereo vision for mav flight, in: 2015 IEEE
International Conference on Robotics and Automation (ICRA),
IEEE, 2015, pp. 50–56.

[8] P. Skulimowski, M. Owczarek, A. Radecki, M. Bujacz, D. Rzes-
zotarski, P. Strumillo, Interactive sonification of u-depth images
in a navigation aid for the visually impaired, Journal on Multi-
modal User Interfaces 13 (3) (2019) 219–230.

[9] T. Nageli, J. Alonso-Mora, A. Domahidi, D. Rus, O. Hilliges,
Real-time motion planning for aerial videography with real-time
with dynamic obstacle avoidance and viewpoint optimization,
in: IEEE Robotics and Automation Letters, Vol. 2, 2017, pp.
1696–1703.

[10] A. Ess, B. Leibe, K. Schindler, L. van Gool, Moving obstacle
detection in highly dynamic scenes, in: 2009 IEEE International
Conference on Robotics and Automation, 2009, pp. 4451–4458.

[11] K. Berker Logoglu, H. Lezki, M. Kerim Yucel, A. Ozturk, A. Ku-
cukkomurler, B. Karagoz, E. Erdem, A. Erdem, Feature-based
efficient moving object detection for low-altitude aerial plat-
forms, in: Proceedings of the IEEE International Conference
on Computer Vision Workshops, 2017, pp. 2119–2128.

[12] I. A. Bârsan, P. Liu, M. Pollefeys, A. Geiger, Robust dense
mapping for large-scale dynamic environments, in: 2018 IEEE
International Conference on Robotics and Automation (ICRA),
IEEE, 2018, pp. 7510–7517.

[13] S. Zhang, R. Benenson, M. Omran, J. Hosang, B. Schiele,
Towards reaching human performance in pedestrian detection,
IEEE transactions on pattern analysis and machine intelligence
40 (4) (2017) 973–986.

[14] S. Kraemer, C. Stiller, M. E. Bouzouraa, Lidar-based object
tracking and shape estimation using polylines and free-space
information, in: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 4515–
4522.

[15] J. Miller, A. Hasfura, S.-Y. Liu, J. P. How, Dynamic arrival rate
estimation for campus mobility on demand network graphs, in:
2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2016, pp. 2285–2292.

[16] A. Cherubini, F. Spindler, F. Chaumette, Autonomous vi-
sual navigation and laser-based moving obstacle avoidance,
IEEE Transactions on Intelligent Transportation Systems 15 (5)
(2014) 2101–2110.

[17] D. Falanga, K. Kleber, D. Scaramuzza, Dynamic obstacle avoid-
ance for quadrotors with event cameras., Science Robotics 5 (40)
(2020).

[18] B. He, H. Li, S. Wu, D. Wang, Z. Zhang, Q. Dong, C. Xu,
F. Gao, Fast-dynamic-vision: Detection and tracking dynamic

13

objects with event and depth sensing, in: 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
IEEE, 2021, pp. 3071–3078.

[19] B. Damas, J. Santos-Victor, Avoiding moving obstacles: the
forbidden velocity map, in: 2009 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2009, pp. 4393–4398.

[20] N. Malone, H.-T. Chiang, K. Lesser, M. Oishi, L. Tapia, Hybrid
dynamic moving obstacle avoidance using a stochastic reachable
set-based potential field, IEEE Transactions on Robotics 33 (5)
(2017) 1124–1138.

[21] H. Febbo, J. Liu, P. Jayakumar, J. L. Stein, T. Ersal, Moving
obstacle avoidance for large, high-speed autonomous ground ve-
hicles, in: 2017 American Control Conference (ACC), 2017, pp.
5568–5573.

[22] W. Luo, W. Sun, A. Kapoor, Multi-robot collision avoidance un-
der uncertainty with probabilistic safety barrier certificates, in:
Advances in Neural Information Processing Systems, Vol. 33,
2020.

[23] C. Cao, P. Trautman, S. Iba, Dynamic channel: A planning
framework for crowd navigation, in: 2019 International Con-
ference on Robotics and Automation (ICRA), IEEE, 2019, pp.
5551–5557.

[24] D. Zhu, T. Zhou, J. Lin, Y. Fang, M. Q.-H. Meng, Online state-

time trajectory planning using timed-esdf in highly dynamic
environments, arXiv preprint arXiv:2010.15364 (2020).

[25] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based al-
gorithm for discovering clusters in large spatial databases with
noise, in: Proc. 1996 Int. Conf. Knowledg Discovery and Data
Mining (KDD ’96), 1996, pp. 226–231.

[26] T. Eppenberger, G. Cesari, M. Dymczyk, R. Siegwart, R. Dubé,
Leveraging stereo-camera data for real-time dynamic obstacle
detection and tracking, in: 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), IEEE, 2020,
pp. 10528–10535.

[27] K. Bernardin, A. Elbs, R. Stiefelhagen, Multiple object track-
ing performance metrics and evaluation in a smart room en-
vironment, in: Sixth IEEE International Workshop on Visual
Surveillance, in conjunction with ECCV, Vol. 90, Citeseer, 2006.

[28] H. Zhu, J. Alonso-Mora, Chance-constrained collision avoid-
ance for mavs in dynamic environments, IEEE Robotics and
Automation Letters 4 (2) (2019) 776–783.

[29] W. Zhang, S. Wei, Y. Teng, J. Zhang, X. Wang, Z. Yan, Dy-
namic obstacle avoidance for unmanned underwater vehicles
based on an improved velocity obstacle method., Sensors 17 (12)
(2017) 2742.

14

