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Abstract— The autonomous navigation of unmanned aerial
vehicles in a rapidly changing environment, such as avoiding
small fast moving objects with onboard sensing, still remains
a challenge. In this paper, we propose a complete system that
only relies on a lightweight RGBD camera to achieve fast and
accurate perception and avoidance of small dynamic obstacles,
whereas navigating in a complex environment. Firstly, we detect
the moving objects by Yolo-Fastest in RGB frame, obtain the
3D information with the depth image, and track the multiple
detected objects with our proposed 3D-SORT (Simple Online
and Real-time Tracking in Three-dimensional Space) algorithm.
To achieve fast dynamic avoidance, we design an effective
method to generate the optimized smooth trajectory to dodge
all the static and dynamic obstacles with the predicted moving
objects’ trajectories. Finally, we integrate the above methods
on our UAV platform, and demonstrate the performance of
our system by testing thoroughly in simulation and real-world
experiments.

I. INTRODUCTION

With robotics developing from its birth to the present, an
intention always stands unchanged: people hope that robots
can help humans undertake some heavy and dangerous work,
such as exploring dangerous and unknown environments
[1]. Unmanned aerial vehicles (UAVs), especially micro
UAVs, have become the best choice to explore the unknown
environment because of their motion flexibility in space.

After the development of aerial autonomy technology in
recent decades, autonomous flight of UAVs in static unknown
environments has been achieved [2]. However, those fast
moving objects in the environment still pose severe threats
to UAVs, such as bats in the cave and birds in the sky. In
real-world applications, UAVs attacked by birds are often
reported [3], and UAVs may also face with intentional
attacks. Therefore, it is necessary to enable UAVs to avoid
attacks from small fast-moving objects.

From a technical point of view, the difficulty for the micro
UAVs to avoid fast objects mainly comes from three aspects.
First, the latency of perceiving small objects is supposed
to be short enough, and shorter than the theoretical upper
bound. The latency bound is related to the maximal sensing
distance and the object detecting time cost. Second, the
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Fig. 1: Sequence of our UAV dodging the multi-balls attack.
The two tennis balls are thrown out simultaneously. No
motion capture is used.
motion planning method should be effective in computing,
also it should be feasible for navigation tasks. Finally, all the
algorithms are deployed on an onboard computer with very
limited computing resources, to run in real-time.

The proposed system in this paper, to our best knowl-
edge, is the first one that tackles all the above mentioned
challenges. In this paper, we consider the perception and
avoidance of small fast-moving objects (balls) for quadrotors
using only a low-cost depth camera. Comparing to existing
studies [3]–[5], we only use a low-cost depth camera instead
of event cameras, and we consider multiple objects which
also introduces more challenges to the multi-object tracking
and obstacle avoidance. Furthermore, our avoidance targets
in tests are tennis balls which are smaller, and more difficult
to perceive, than the basketball considered in existing works.

To achieve the goal, we propose a 3D-SORT (Simple
Online and Real-time Tracking in 3D Space) algorithm to
track the multiple objects and estimate their velocity and
acceleration in 3D space. A network is trained carefully to
detect small objects at a relatively far distance. Then, we
simplify the trajectory optimization in [6] and extend it to
the dynamic environment to generate the spatial-temporal
optimal trajectory. Compared to the method in the related
works [3]–[5], our approach can generate a much more safe
and energy-saving trajectory to avoid dynamic objects. We
perform comprehensive tests in simulation and real-world to
validate the performance of our method. Our contributions
are summarized as follows:

1) We propose a novel 3D-SORT algorithm that can



achieve a fast and effective tracking of multiple fast-
moving objects. The algorithm is composed of unique
state estimation and data association method for infor-
mation fusion.

2) We propose a hierarchical trajectory generation method
composed of a kinodynamic path searching method
and a gradient-based optimization. Even both static and
dynamic obstacles are considered, the whole procedure
is finished in milliseconds. The energy and time cost
and safety are much improved compared to the state-
of-the-art works.

3) We are the first to demonstrate that quadrotors can avoid
multiple small (radius < 0.035 m) fast-moving (speed >
5 m/s) objects attacking from a close (< 5 m) distance
with only a low-cost depth camera. We will release our
source code1 to the public.

II. RELATED WORK

Among most existing related works that demonstrate suc-
cessful avoidance towards fast moving objects, the system
can be regarded to be composed of two major parts: objects
perception and vehicle motion planning. In practice, the
perception part brings greater challenges and plays a more
critical role in the system. Also, the related motion planning
methods in the motion planning part still remain to be
improved in safety and optimality.

A. Perception of small fast moving objects

To avoid fast moving objects, the two critical factors are
the perception latency and the detection range of distance
[7]. To our best knowledge, all the existed works that dodge
the fast moving objects are based on event cameras [3]–
[5], because event cameras benefit from the low latency in
observing dynamic events. A learning-based method is also
proposed to merge the two-stage algorithm into a series
of neural networks to estimate both the ego-motion and
the motion of independently moving objects [4]. Besides,
Some works explore the techniques specifically about the
motion compensation and the motion segmentation based on
event cameras [8], [9]. However, the resolution for those
light-weight (typically below 50 g) event cameras is only
about 320 by 240 pixels, which is much lower than that of
the state-of-the-art standard cameras for robotic applications
[3]. This will lead to greater position estimation errors of
objects. Also, the event camera is only sensitive to dynamic
objects when they are close, otherwise it is difficult to
distinguish moving objects from the background events [7].
For depth cameras, a similar case is that a drone can catch
a falling ball with only an RGB camera to perceive the
ball’s state [10], suggesting that avoiding a flying ball with
an RGBD camera is also possible. In recent years, some
researchers achieved successful avoidance towards relatively
slow moving obstacles (such as walking pedestrians) with
onboard vision [11]–[13]. Also, object tracking methods with
image input is extensively studied over years [14], [15].

1https://github.com/arclab-hku/fast-dodging

However, the research about dodging fast, small objects with
only a single onboard RGBD camera during autonomous
navigation tasks still remains blank. For lidars, learning-
based object detecting and tracking methods show robust
results [16], but all the related methods are pretty far from
real-time computing on the micro onboard computers, also
the message update rate and the sparse spatial resolution
of lidar is not satisfactory for detecting fast moving small
objects. One most recent work demonstrates the avoidance
towards small objects with a solid-state lidar on the UAV
[17], however, as no object detection and velocity estimation
is involved, all objects are considered in the same way as for
static objects.

B. Dynamic Obstacle Avoidance

The obstacle avoidance problem for UAVs, especially for
quadrotors, has been wildly studied and explored in recent
years. It is achieved by planning the continuous safe motion
primitives based on the kinematic model and executing
the primitives with the flight controller. Several complete
solutions in the community have demonstrated fast, robust
flights in a clustered static environment, and the motion
primitives can be solved in real-time [2], [18], [19]. For
avoiding dynamic obstacles, model predictive control [12]
is one feasible solution, and it can exploit the full dynamics
of the aircraft [20]. A gradient-based polynomial trajectory
optimization method [11] shows a big improvement in com-
putation efficiency and trajectory optimality. For fast small
objects, researchers proposed methods for catching flying
balls earlier than avoiding them. An effective sampling-based
motion primitive generation method [21] is proposed to show
a high success rate to catch a randomly thrown ball. To
avoid fast objects, the existed works [3]–[5] all choose to
adopt a primary and simple method to plan the motion, such
as artificial potential field (APF), because it is very easy
to compute and the computation time cost is short enough.
However, such a method is not suitable for complex scenarios
when dense static obstacles and multiple fast objects are
existing, because of the local minimum problem and the
absence of complete collision check.

III. PERCEPTION OF SMALL FAST-MOVING OBJECTS

In this section, we will first present the multi-object
detection. Then, we will present our proposed 3D-SORT
algorithm for the tracking of multiple small fast-moving
objects using RGB and depth images.

A. Detection of Small Fast-Moving Objects

Assume that there is a specific object in the environment
attacking the drone. At time t, a total of N objects enter
the camera field of view, we use YOLO algorithm to detect
the objects in the RGB frame. Although there are some fast
object detecting methods directly based on clustering the
spatial information, such methods are not robust for small
objects because they are hard to be distinguished from noise,
also the clustering algorithm can not distinguish objects when
they are close [3], [11], [12]. Given the detection result,



we can obtain the central pixel position (uc,vc) and pixel
scale (sb,rb) of the objects, where sb represents the area of
the detection box, and rb represents the aspect ratio of the
detection box. By projecting the region of interest (ROI) of
the detection boxes to depth image frame, we can get the
depth of the objects, expressed as d. Then the position of an
object in world frame can be described by

M1M2[x,y,z,1]T = d[u,v,1]T , (1)

where M1 represents the camera intrinsic matrix, and M2
represents the rotation matrix from world frame to camera
frame. The detection result at time t can be presented as a
set ξt defined as:

ξt = {(pi,ci)|i ∈ (1,N)} , (2)

where N is the amount of detected moving objects, pi ∈ R3

denotes the object position in 3D space, and ci = [si
b,r

i
b]

T is
the pixel scale vector, i is the index of the dynamic object
among multiple ones.

B. Tracking of Small Fast-Moving Objects

To avoid multiple fast-moving objects, it is necessary to
predict their trajectories to plan the avoidance beforehand.
However, it is difficult to predict the trajectories for fast-
moving objects using low-cost depth cameras. In this section,
we propose a 3D-SORT algorithm, which is presented in
Algorithm 1, to achieve this.

Our proposed 3D-SORT algorithm is distinct from the 2D
version [14], [15]. The 3D-SORT algorithm can track and
predict the 3D position of the objects due to its unique state
estimation and data association techniques as follows:

Algorithm 1 Proposed 3D-SORT
Input: Detection indices ξt = {(Pi,Ci)|i ∈ [1,N]}, Tracking
indices χt =

{
(P̂h,Ĉh)|h ∈ [1,B]

}
1: Compute cost matrix TB×N using Equation 7
2: Assign prediction and detection via Hungarian algorithm
3: Update matched pairs set Mp, unmatched detection set

Ud , unmatched tracker set Ut
4: for pair in Mp do
5: if T (pair)> hmin then
6: update the tracker by two KFs to obtain (P̂,Ĉ)
7: else
8: Ud ←Ud ∪ (P,C) in pair
9: for (P,C) in Ud do

10: χt ← χt ∪ (P̂,Ĉ)

11: for (P̂,Ĉ) in Ut do
12: if Age(P̂,Ĉ) >Agemax then
13: χt ← (P̂,Ĉ) \ χt

1) State Estimation: Here we describe our state estimation
method. We conduct separate state estimation for the object’s
space motion and pixel scale. The inter-frame displacements
of each object in world frame is approximated as a linear
constant acceleration model, and the change in pixel scale is
approximated as a first-order differential model. According

to the detection results in (2), the motion model of each
target can be formulated as

Piκ =
[
pT

iκ , ṗT
iκ , p̈T

iκ

]T
,Piκ+1 =APiPiκ +vPi

κ ,z
Pi
κ =HPiPiκ +wPi

κ ,
(3)

APi =

 I3×3 ∆t · I3×3 0.5∆t2 · I3×3
03×3 I3×3 ∆t · I3×3
03×3 03×3 I3×3

 , (4)

HPi =
[

I3×3 I3×3 03×3
]
, (5)

where κ denotes the κth time stamp, ∆t is the time interval
between two adjacent frames of images, v is the normally
distributed process noise and w is the normally distributed
measurement noise. Basically, the pixel scale model (Ciκ =[
cT

iκ , ċ
T
iκ

]T ) is similar to Equation (3)-(5), the difference is
only the state transition matrix A and the measurement matrix
H:

ACi =

[
I3×3 ∆t · I3×3
03×3 I3×3

]
, HCi =

[
I3×3 03×3

]
. (6)

Using this, we can create two Kalman filters to conduct
the prediction and update of the two models (Algorithm 1
Line 10). The posterior probability outputs of the filters are P̂i
and Ĉi (Line 6). Compared to previous methods, the motion
model with constant acceleration can predict the motion state
of the objects more accurately and generate better trajectory.
The pixel scale is only related to the data association of the
objects, which will be presented in the next part.

2) Data Association: In assigning detected objects to
existing targets, we firstly project P̂i to pixel frame according
to Equation 1, then according to Ĉi, we can get the prediction
bounding boxes in the current image. The assignment cost
matrix combines location and color features. The location
cost matrix is computed as the intersection-over-union (IOU)
distance between each detection and all predicted bounding
boxes from the existing targets, and the color cost matrix
is computed as Bhattacharyya Coefficient between the HSV
channels histogram of each detection ROI and all predicted
ROI. Although we may encounter such a situation that
the appearance of the objects is very similar, the lightning
situation on each object varies. Thus, the color information
in HSV space can distinguish similar objects at different
positions. For the ith (i = 1,2, ...,B) prediction box and
hth (h = 1,2, ...,N) detection box, the cost matrix Tih can
be expressed as

Tih = a∗ fiou(i,h)+b∗ fhsv(i,h), a+b = 1, (7)

fiou(i,h) =
Ωih

Ai +Ah−Ωih
, (8)

fhsv(i,h) = 1−

√
1− 1√

H̄iH̄hn2
max

nmax

∑
n=1

√
Hi(n)Hh(n), (9)

where Ai and Ah are the area of the prediction and detection
bounding boxes, respectively. Ωih is the overlap area of the
two bounding boxes, H() is the HSV histogram function, H̄
is the mean of H(), and n is the value of H or S or V channel
(see Fig. 2). Tih ∈ (0,1) indicates the matching degree where
a larger value means a better match. The assignment is solved
optimally using the Hungarian algorithm (Algorithm 1 Line



1-3). Additionally, a minimum threshold hmin is imposed
to reject assignments where the cost between detection and
target is less than hmin (Line 5), and trackers lost of matching
for three continuous times will be deleted (Line 11-13). The
process of the assignment method is shown in Fig. 2.

Fig. 2: Principle of our data association method. The ratio
of the overlapping area of the detection box and the tracking
box to the total area represents the spatial correlation, and the
comparison of the HSV histogram in the detection box ROI
and the prediction box ROI represents the color correlation.

3) Trajectory Prediction: Based on the filtered 3D position
pt0 , velocity vt0 and acceleration at0 at current time t0, we
can represent the position trajectory pb(t) of the ith dynamic
object at any future time t as

pi
b(t) = pi

t0 + vi
t0(t− t0)+

1
2

ai
t0(t− t0)2. (10)

IV. TRAJECTORY PLANNING

In this section, we present our trajectory planning method
based on gradient optimization with kinodynamic and spa-
tial constraints. The planner takes the safety corridor, the
dynamic objects’ trajectory, and the initial and goal states
of the vehicle as the inputs. The output is a dynamically
feasible and safe trajectory.

A. Hierarchical planning

At the beginning of the trajectory planning, a collision-free
path connects the start point and the goal is searched. We
modify the original 3D hybrid A* algorithm [18] to search
a kinodynamic-feasible path efficiently and directly on point
cloud. A KD-tree [22] is built up with the most recent point
cloud instead of a voxel map to reduce latency. In the safety
check function, we do the nearest neighbor query with the
sample point on the proposed path segment. If the distance to
the neighbor is greater than the pre-assigned safety margin,
then the queried sample point is safe.

Then, the safety corridor is built, composed of a series of
polyhedrons or spheres connected end to end. The trajectory
is allowed to vary inside the corridor, which is more flexible
than directly optimizing the trajectory with the guidance of
the path [?], and the computing efficiency can be improved.

For brevity, we directly define the SFC as a list of m−1
convex polyhedrons, which is generated from a path of m

waypoints. Each polyhedron H j (0 < j < m) is defined as

H j =

{
x ∈ R3 |

(
x− p̂k

j

)T
n⃗k

j ≤ 0,k = 1,2, · · · ,N j

}
, (11)

where N j is the number of faces of the jth polyhedron, and
p̂k

j, n⃗
k
j are the point and the corresponding normal vector

on the face. At last, the trajectory is optimized under the
constraints of SFC.

B. Trajectory optimization
With MINCO (minimum control) class [6], we can directly

control the spatial and temporal profile of a trajectory. Thus,
we are able to solve a safe trajectory in a very short time,
which is optimal in time and energy cost (as the user-defined
objective function), while satisfying dynamic feasibility.

Fig. 3: The optimization of the trajectory to avoid a dynamic
object. Some sample points on the trajectory (black dots) are
checked not safe (inside the red dashed circle) in the upper
figure. After the optimization, the sample points are all safe,
as shown in the lower figure. The optimization changes the
position of the original waypoints (yellow dots), as well as
the time allocation of the trajectory pieces. Each waypoint
must stay inside the overlapping part of the two adjacent
polyhedrons, and the trajectory only varies inside the safety
corridor.

We use a series of polynomials to define the trajectory in
each dimension (x, y, and z) in 3D space, denoted as:

p j(t) =
m−1

∑
j=1

CT
j β

(
t−Tj−1

)
, Tj−1 ≤ t < Tj (12)

where C j ∈ R6×3 is the coefficient matrix of the jth

piece and β (t) =
[
1, t, · · · , t5

]T is the time vector. The states
including position, velocity, and acceleration at the joint
point between polynomial pieces are continuous, and the
order of polynomials is 5, so the angles of the quadrotor’s
body will be changing smoothly along the planned trajectory
according to the differential flatness property.

We define the optimization problem formulation as fol-
lows:

min
C,T

G = Se +ρ (Tm−1−T0)+λvSv +λaSa +λcSc +λdSd

s.t. p[s]j (Tj) = p[s]j+1(0) = p̄ j,

p j (Tj) ∈H j ∩H j+1,Tj−Tj−1 > 0, (13)
∀ j ∈ {1, · · · ,m−1},

p[s]1 (0) = p̄s, p[s]m−1 (Tm−1) = p̄ f ,



where C (x) = max(x,0)3 is a cubic function, ρ is the
weight of the flight time of the whole trajectory. [s] represents
a set of derivatives of the highest order s. We choose s = 2,
so the position, velocity and acceleration of the joint point
between polynomial segments are all equal. p̄ j ∈ R(s+1)×3

is the interval condition, p̄s, p̄ f ∈ R(s+1)×3 are the start and
final states, respectively. Se, Sv, Sa, Sc, Sd are the cost for
the energy, the maximum velocity constraint, the maximum
acceleration constraint, the collision with safety corridor, and
the collision with dynamic objects respectively. λv, λa, λc,
and λd are the corresponding weights. C is the overall coeffi-
cient matrix representing

(
CT

1 ,C
T
2 , · · · ,CT

m−1
)T ∈R2(m−1)s×3.

We define the time allocation vector T as:

T = (T1−T0,T2−T1, · · · ,Tm−1−Tm−2)
T

= (δ1,δ2, · · · ,δm−1)
T ∈ Rm−1

+ .
. (14)

The detailed definition of the costs are as follows:

Se = ∑
m−1
j=1 ∑

L−1
l=0

∥∥∥CT
j β (2)

( l
L δ j

)∥∥∥2

2

δ j
L ,

Sv = ∑
m−1
j=1 ∑

L−1
l=0 C

(∥∥∥CT
j β (1)

( l
L δ j

)∥∥∥2

2
− v2

max

)
δ j
L ,

Sa = ∑
m−1
j=1 ∑

L−1
l=0 C

(∥∥∥CT
j β (2)

( l
L δ j

)∥∥∥2

2
−a2

max

)
δ j
L , (15)

Sc = ∑
m−1
j=1 ∑

L−1
l=0 ∑

N j
k=1 C

((
CT

j β (0)
( l

L δ j
)
− p̂k

j

)T
n⃗k

j

)
δ j
L ,

Sd = ∑
m−1
j=1 ∑

L−1
l=0 ∑

N
i=1 C

(
−
∥∥∥CT

j β (0)
( l

L δ j
)
− p̂i

b

∥∥∥2

2
+d2

s

)
δ j
L ,

where L is the sample number on each piece of the trajectory,
and N is the number of dynamic objects. ds = ectl + epos +
rsum is the safety radius to guarantee the safety between
the vehicle trajectory and the obstacle at any moment. It
is composed of the sum of characteristic radius of the
dynamic object and vehicle rsum, the estimated respond-
ing error of the entire control system ectl , and the object
position estimation error epos. epos can be estimated from
posterior estimated covariance matrix PPi of the KF, epos =√

PPi [1,1]+PPi [2,2]t f +PPi [3,3]t2
f /2 (t f = l

L δ j + ∑
j−1
q=1 δq).

vmax and amax are the upper bound of the velocity and
acceleration magnitude, respectively. p̂i

b can be obtained
by forwarding the object position via Equation 10, in a
discrete form p̂i

b = pi
b(t f ). In addition, Se is the integration

of a polynomial essentially, and it is easy to calculate the
closed-form result in each iteration of the optimization. The
other costs are accumulated in discrete form in our code by
iterating the sample points along the trajectory.

To solve the optimization problem efficiently, we need
the gradient w.r.t the joint points p between the trajectory
pieces, written as ∂G(p,T)/∂p. Also, we use ∂G(p,T)/∂T
to represent the gradient w.r.t the time vector T. The required
gradients can be derived by the Gradient Propagation Law:

∂G(p,T)
∂p

=
∂G
∂C

∂C
∂p

,
∂G(p,T)

∂T
=

∂G
∂T

+
∂G
∂C

∂C
∂T

, (16)

Since we can calculate ∂C/∂p and ∂C/∂T efficiently
referring [6], and the gradient ∂G/∂C, ∂G/∂T can be
derived following the cost definition in (19), the gradients

of the objective function are finally obtained. In addition,
the constraints in (17) can all be eliminated by the method
in [6], the optimization problem is transformed to an uncon-
strained one and we can solve it efficiently with optimization
algorithms such as L-BFGS.

V. EXPERIMENTS AND EVALUATIONS

A. Implementation Details

The perception and avoidance of obstacles are tested
and verified in the Robot Operation System (ROS)/Gazebo
simulation environment first and then in the real-world
experiment. We present the hardware design of our quadrotor
platform for the experiment. We use a Q250 airframe,
carrying an Intel RealSense D435i depth camera, and an
NVIDIA Jetson Xavier NX running Ubuntu 18.04 as onboard
computer. The controller of the UAV is a PixRacer running
the PX4 flight stack. The overall UAV platform only weighs
0.98 kg, with a size of 178× 178× 75 mm. The whole
hardware platform is pretty light-weight with a thrust-weight
ratio of 3.125, and the theoretical maximal acceleration of
the aircraft is about 29 m/s2 for horizontal maneuvers. For
the simulation tests of the trajectory planning method, we
use a laptop computer with an Intel i7 8565U CPU running
at about 2.8 GHz. An overview of our system is shown in
Fig. 4.

Fig. 4: Overview of our UAV system.

B. Evaluation of Object Detection

In order to achieve the fastest real-time detection speed, we
choose Yolo-FastestV22 algorithm, which is a fast and light
target detection algorithm. Tennis balls (size from 2.57∼2.70
inches in diameter) are selected as the small objects to attack
the UAV, and we collected about 2000 tennis ball images as
the dataset to train the model. The final obtained model is
only 477.4KB, running on the GPU of Jetson Xavier NX.

To choose the resolution, we need to trade off the detection
speed against the maximum distance that the tennis balls can
be detected. A basic rule is that higher network input reso-
lution can help to detect farther objects, but the computation
time cost will be longer. To choose a reasonable resolution,
we design action time tact = thit− test as the indicator, where
thit is the time from the first successful object detection to
the collision on the drone (the collision is recognized in
IMU data), test is the time from the first successful detection
to the first object motion estimation, which needs three
continuous detection. tact indicates the time remained for the
motion planning module and the propulsion system to avoid

2https://github.com/dog-qiuqiu/Yolo-FastestV2



moving objects, and it should be as long as possible. With
different input resolution, the detection performance is shown
in TABLE I. We fix the camera and throw balls at the camera
from about 5 m for 20 times, respectively, and calculate the
average value for the time results. In conclusion, 672 ∗ 672
input size is selected because it results the longest tact .

TABLE I: Detection Performance of Different Resolution
Input Performance
Size Time Cost(ms) Max Distance(m) Action Time(ms)

736*736 42 4.3 220
672*672 23 3.9 270
512*512 14 2.2 120

Fig. 5: Planning of optimized trajectory of UAV to dodge
ball attack while flying in a complex Gazebo simulation
environment.
C. Evaluation of Object Tracking in 3D Space

To validate the accuracy of estimated trajectories, we
compare the result of 3D-SORT algorithm with the ground
truth data provided by Vicon. The object is fixed on a
pole and fitted with reflective balls, and waved by hand
with a max velocity of about 5m/s(shown in Fig. 6). We
evaluate the performance of our method based on the open-
source trajectory evaluation tool EVO3. The mean APE
(Absolute Pose Error) achieves 0.038m, and the mean AVE
(Absolute Velocity Error) achieves 1.712m/s. The evaluation
of position and velocity estimation is shown in Fig. 7. It can
be seen that the estimated position and velocity closely match
the ground truth provided by the Vicon.

To further demonstrate the benefit of using the constant
acceleration model, we compare with the constant velocity
model which is usually in current drone obstacle avoidance
studies [7]. We predict the trajectory one second into the
future based on the current state estimates of the two models
with a sampling time of 0.05s, and compare to the ground
truth data. The predicted trajectory of constant velocity
model is only a straight line while constant acceleration
model is a second-order polynomial. According to Fig.8,
obviously the prediction trajectory of constant acceleration
model can better represent the motion trend of the obstacle,
which gives more advantage to the collision avoidance.

3https://github.com/MichaelGrupp/evo

Compared with the method proposed in paper [11], run-
ning point clouds in real-time on a mobile platform is very
resource-intensive, and it is difficult to detect small objects
using low-resolution point clouds, which are generally un-
recognized or close to noise. Our pipeline is more effective
for small objects and costs less computing resources. The
running time of the 3D-SORT is within 5 ms, and the
overall tracking by detecting pipeline is within 30 ms. The
comparison result is presented in TABLE II.

Fig. 6: Tracking result displayed in RGB image.

TABLE II: Perception Method Comparison

Methods Effective Distance(m) Time Cost(ms)

Method [11](1280*720) / Can’t be real-time

Ours(1280*720) 3.9 29
Method [11](640*480) 0.9 30

Ours(640*480) 3.0 25

Fig. 7: The comparison of the estimated states of the ball by
our method and ground truth obtained by Vicon.

Fig. 8: Comparison of the obstacle future trajectory by
constant velocity and constant acceleration model.
D. Evaluation of Attack Avoidance

Firstly, we present several flight tests in Gazebo simu-
lation. The obstacles hit the UAV from different directions



Fig. 9: Screenshots of the UAV dodging two balls thrown continuously while navigating the unknown environment. No
mocap is used. The 2nd ball was thrown out in sequence (5) and the UAV successfully avoided it in sequence (6) and (7).

with an average velocity of 6 m/s, the acceleration is equal
to the gravitational acceleration 9.8 m/s2, and the states of
the obstacles are simulated as ROS topic and published with
timestamps. The simulated drone model is modified with the
same weight and trust weight ratio as our real vehicle, the
parameters of the PX4 flight controller also keep the same.
Fig. 5 presents the attack and planning result in simulation.

To study the influence on flight safety from the different
components of our trajectory planning system, we give
distinct parameter settings of the algorithm, including the
maximum polyhedron size sH (for building the SFC), the
control sampling number Nacc of the hybrid A-star path
searching, and the maximum velocity and acceleration con-
straint vmax, amax. We set the minimum distance between the
drone and dynamic objects dmin, the trajectory generation
time cost tcomp and the successful rate η (dmin < 0.4m for
failure) as indicators. The drone flies in the simulation world
with only dynamic objects, for each parameter configuration
the data is collected after 10 attacks. Each attack contains 4
objects at speed 6 m/s starting from 1 to 6 meters away from
the vehicle. The results are compared in TABLE III. vmax
shown in TABLE III is only for avoiding dynamic objects,
in our tests it is set to 2 m/s if no dynamic objects are
detected. The parameters in row 1 are the default value we
use in simulation. We can conclude from rows 2, 4, and 5
that limiting the corridor size or the maximum velocity or
acceleration will drop the successful avoidance rate towards
dynamic objects because the solution space of trajectory op-
timization is narrowed, and sometimes the feasible solution
does not exist. Increasing the control sampling number of
hybrid A-star will cause a much heavier computational load
(only necessary for dense static obstacles), and the larger
computing latency will lead to a collision with the close and
fast objects.

In TABLE IV, we summarize the success rate of avoidance
under different obstacle conditions (initial distance of ob-
jects, latency), each result comes after 50 tests in simulation.
We add the pre-assigned time delay at different levels after
the motion planner received the objects’ state to simulate
the time cost of the object detection and tracking module.
The avoidance success rate is about 98% when the reaction
time tact is greater than 0.25 s, thus our system is verified
practical for real applications according to the maximal
average tact = 0.27 s recorded in TABLE IV.

To verify the advantage of our trajectory planning method
in flight safety and optimality (energy cost and trajectory
duration), we compare it with the artificial potential field

TABLE III: Parameter analysis of trajectory planning
sH (m) Nacc vmax(m/s) amax(m/s2) dmin(m) tcomp(ms) η(%)

5 5 6 20 0.56 3.32 100
1.5 5 6 20 0.31 3.95 70
5 21 6 20 0.33 36.40 90
5 5 2 20 0.26 3.51 50
5 5 6 5 0.39 4.25 60

TABLE IV: Success Rate of Attack Avoidance Under Dif-
ferent Conditions in Simulation, 50 trials

Ball Ball Velocity Action Time tact
number 5m/s 9m/s 12m/s > 0.25s 0.1−0.25s < 0.1s

1 100% 100% 94%
2 100% 90% 88% 98% 90% 84%
4 92% 80% 72%

(APF) method [3], and a relative velocity planning method
[23]. We set tall and J to evaluate the trajectory optimality in
navigation tasks, and flight success rate η and the minimum
distance dmin are utilized to justify safety. tall is the flight
time to reach the target point, and EA is the integral of
the UAV acceleration modulus during the flight. Note that
the APF method used in [3] does not consider avoiding
static obstacles, which indicates the huge superiority in
environment adaptability of our method. When comparing
with APF, only dynamic objects exist in simulation for fair,
and static obstacles are set up when compared with [23]. We
conducted 20 repeated flight tests for each approach, starting
from position (−6,0,1.5) to (10,0,1.5) with 4 randomly
initialized dynamic object (the same configuration as in
TABLE III, attacking once towards the current position of the
drone during the navigation. amax for the three approaches is
29 m/s2. vmax is set to 2 m/s, but when any dynamic object
is detected vmax = 6m/s. The results are shown in TABLE V.
Our method shows superiority in all four indicators. The APF
method does not involve any collision check between the
vehicle trajectory and objects’ trajectories, also the vehicle
kinodynamic constraints are not respected, thus no promise
in flight safety, let along optimality. The method in [23]
assumes the moving objects are of constant velocity, which
differs from the objects in our tests. More importantly, [23]
prioritizes avoiding closer obstacles but can not guarantee a
feasible solution for further obstacles’ avoidance, where the
planner sometimes fails.

TABLE V: Benchmark tests for trajectory planning
Method EA(m/s2) tall (s) dmin(m) η(%)
Ours 3852 8.23 0.58 95
APF 5670 12.94 0.28 65
[23] 4835 11.61 0.26 75



E. Experiments of Dodging Multiple Small Fast-moving
Balls

We perform two types of experiments on dodging small
fast-moving tennis balls: continuous attack and simultaneous
attack. In both experiments, the UAV is required to navigate
in an unknown environment to avoid static obstacles. The
UAV uses its onboard VIO FLVIS4 for localization instead
of using a motion capture system. Please refer to our video
for the results 5.

In the first type of experiment, we throw out multiple
balls continuously. As seen in Fig. 9, the drone successfully
avoided the two balls without colliding with any static
obstacles. Because the balls are moving quickly, the UAV
also has to perform aggressive maneuvers to avoid them.

In the second type of experiment, we throw out multiple
tennis balls simultaneously. In this case, the UAV has to
track multiple balls simultaneously to plan a trajectory to
avoid them. As seen in Fig. 1, the UAV successfully avoided
them without colliding with static obstacles.

We also performed avoiding four balls thrown from differ-
ent directions and the UAV also successfully avoided them.
In the experiments, the distance between UAV and ball is
about 5 m, and the velocity of the ball after throwing is about
5 m/s. The reader can refer to the video for more tests.

VI. CONCLUSION

In this paper, we propose a complete autonomous UAV
system to dodge fast and small objects in the navigation
tasks. To our best knowledge, we are the first to demonstrate
the avoidance of fast objects with the onboard vision from
an RGBD camera, and promote the avoidance into complex
navigation tasks. Our system achieves satisfactory perception
precision with sensors of a lower price than the event camera
based works. In addition, our motion planning method shows
better safety and optimality in time and energy cost, while
being capable of performing navigation tasks.

Our UAV can avoid fast-moving balls most of the time.
However, failure cases also exist, most of which are related
to the field of view of the camera. If the ball flies outside of
the field of view, the tracking may fail. However, in this case,
as the ball is outside of the view, it also does not collide with
the UAV. One future work would be to increase the field of
view by adding more cameras. Although we took motion blur
into consideration, we did not consider lighting conditions.
Another interesting future work would be to enhance the
robustness of the perception in terms of different lighting
conditions.
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