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Abstract— This paper presents a novel nonlinear disturbance
rejection approach for high precision model-based control of
hydraulic robots. While most disturbance rejection approaches
make use of observers, we propose a novel adaptive Unscented
Kalman Filter to estimate the disturbances in an unbiased
minimum-variance sense. The filter is made adaptive such
that there is no need to tune the covariance matrix for the
disturbance estimation. Furthermore, whereas most model-
based control approaches require the linearization of the system
dynamics, our method is derivative-free which means that
no linearization is required. Through extensive simulations
as well as real hardware experiments, we demonstrate that
our proposed approach can achieve high precision tracking
and can be readily applied to most robotic systems even in
the presence of uncertainties and external disturbances. The
proposed approach is also compared to existing approaches
which demonstrates its superior tracking performance.

I. INTRODUCTION

Hydraulic actuators have a high power-to-weight ratio and
can provide forces necessary for highly dynamic robots [1].
As such, robots driven by hydraulic actuators have shown
impressive performance which might be difficult to achieve
for those driven by electrical actuators. The hydraulic robot
Atlas developed by Boston Dynamics can perform acrobatic
motions which demonstrates the powerful performance of
hydraulic actuators. However, hydraulic actuators are more
difficult to control due to their complex dynamics. Even with
internal force controllers, the closed-loop bandwidth of these
actuators may be low, leading to unsatisfactory tracking. This
is even more severe when the inertia of the link is low (such
as the end effector of the robotic arm shown in Fig. 1).
In this case, oil friction will also significantly degrade the
tracking performance. Consequently, this limits their use in
high precision tasks such as construction tasks [2].

To make these hydraulic robots able to achieve accurate
tracking for high precision tasks, this paper explores model-
based control techniques [3], [4], [5], [6]. On the one hand,
these control techniques make use of the system dynamics to
cancel the nonlinearities in the system model. On the other
hand, it also leads to the problem of model uncertainties.
Significant nonlinearities can be difficult to model. Addi-
tionally, external disturbances can be present which brings
more challenge to model-based control techniques.
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Fig. 1: The hydraulic arm used in the experiments.

Model-based control methods, such as optimal control
[4], [7], inverse dynamics control [3], [8], [5], [6] and
operational space control [9], [10], have been an active
research in the field of robotics. While these approaches
show great potential, their performance is degraded due
to uncertainties in the system model. To deal with model
uncertainties, nonlinear adaptive control [3], [11], [5], [6] is
proposed. Adaptive control guarantees the system stability
by updating the parameter estimate based on a Lyapunov
design approach.

While adaptive control can cope with model uncertainties,
its tracking performance can degrade in the presence of
external disturbances. In the low-level actuator control of
hydraulic robots such as the one shown in Fig. 1, the
friction force in the actuators is difficult to estimate. Besides,
robots could interact with external objects during operation.
Carrying an unknown payload can also be seen as an external
disturbance to the system. Robust control can cope with
model uncertainty since it is designed by taking account
of the worst scenario including failures; thus limiting its
performance when the system is operating nominally. Sliding
mode control [12] is proposed to deal with disturbances. But
it requires the bounds of the disturbance and its derivative
which are difficult to obtain in practice.

Another way to cope with disturbances is through dis-
turbance observers [13], [14], [15], [16]. However, most of
these approaches need to linearize the rigid body dynamics
or do not consider the sensor noise.

Although many model-based approaches can cope with
nonlinear systems [17], [18], [19], they still rely on the
linearization of the system model. In robotics, while these
derivatives are difficult to obtain analytically [20], many
differentiation methods are proposed. However, the com-
putational load increases significantly when the number of
Degrees-Of-Freedom (DOF) increases. This poses a chal-



lenge to real time applications.
In this paper, a novel disturbance rejection control is

proposed to improve the tracking performance of hydraulic
robotic arms. It is assumed that the hydraulic actuators have
internal force controllers but the force tracking is unsatisfac-
tory. The proposed method models both model uncertainties
and external disturbances as total disturbances. Then, a
newly-developed adaptive Unscented Kalman Filter (UKF)
is presented to estimate the total disturbances online. Finally,
the unbiased estimates of the disturbances are used by the
controller to attenuate the influence of the disturbances.

The contributions of this paper are as follows:
1) The method we propose is nonlinear unlike many other

approaches using observers which need to linearize the
system dynamics.

2) A novel adaptive UKF is proposed. When UKF[21]
is used to estimate disturbances, the disturbances are
augmented as the states and can be modeled as random
walk processes. However, the covariance matrix of the
random walk processes is unknown. In this paper, we
propose a novel adaptive UKF which can update the
covariance of the disturbance estimation error adap-
tively based on the innovation covariance matching. In
this case, there is no need to tune the covariance matrix
for disturbance estimation.

3) To the best of our knowledge, this is the first paper
which makes use of an adaptive UKF for disturbance
rejection control. It can achieve unbiased minimum-
variance estimate even in the presence of sensor noise.

4) This is one of the few papers which experimentally
demonstrate that the proposed method can significantly
improve the tracking performance of hydraulic robots.

To demonstrate the superior performance and generality of
the proposed approach, we validate our approach on different
platforms (a hydraulic arm and a hydraulic quadruped) as
well as in different disturbance situations (unmodelled actu-
ator dynamics and abruptly dropped weight). Furthermore,
we compare our approach with high gain controllers as well
as recent disturbance attenuation approach in literature.

The structure of this paper is as follows: Section II presents
the nominal model and perturbed model with model uncer-
tainties and disturbances. Section III proposes the adaptive
and simplified UKF which can estimate the disturbances
online. The overall controller is shown in SectionIV. The
performance tests in simulation are given in Section V and
experimental tests are given in Section VI. Finally, Sec-
tion VII concludes the paper and proposes future research.

II. NOMINAL AND PERTURBED MODEL OF THE ROBOTS

This section first presents the nominal model of the rigid
body dynamics. Then, the perturbed model, which contains
model uncertainties and external disturbances is presented.

A. Rigid body dynamics
Consider the rigid-body dynamics with the following

equations of motion:

M(q)q̈ + C(q, q̇) + G(q) = τ (1)

with q is the nd × 1 vector of joint angular positions with
nd the number of DOF, M(q) the nd × nd inertia matrix,
C(q, q̇) the nd×1 Coriolis and centripetal torques and G(q)
the nd × 1 gravitational torques. τ is nd × 1 vector of joint
torques. For the sake of readability, the dependencies of the
system matrices M(q), C(q, q̇) and G(q) on q and q̇ will
be discarded and the system dynamics are rewritten as:

q̈ = −M−1(C + G) + M−1τ (2)

B. Rigid body dynamics with model uncertainties and dis-
turbances

Practically, it is difficult to obtain the exact system pa-
rameters, which leads to model uncertainties (∆M, ∆C and
∆G). Even with internal force controllers, the tracking of
hydraulic actuators is not satisfactory especially when the
joint inertia is low. Oil friction also significantly degrades
the tracking performance, which leads to torque uncertain-
ties. Additionally, external disturbances also bring uncertain
torques. All the uncertainties related to the torque command
are denoted as ∆τ . Taking the uncertainties and external
disturbances into account, the system dynamics Eq. (1) is
rewritten into the following:

Mq̈ + ∆Mq̈ + C + ∆C + G + ∆G = τ + ∆τ (3)

where M, C and G are calculated based on the method in
[22]. Now we can also write the above system into the same
form with Eq. (2) as follows:

q̈ = −M−1(C + G) + M−1τ + d (4)

where d denotes the total disturbances. Note that lumping
all uncertainties and disturbance as d has been used in dis-
turbance observer-based approaches to achieve disturbance
rejection [13], [14], [15], [16]. However, these approaches
either linearize the system dynamics or do not consider
the noise. In this paper, we will propose a novel method
which does not linearize the system dynamics and can
achieve unbiased minimum-variance estimate in the presence
of sensor noise.

III. ESTIMATION OF TOTAL DISTURBANCES

This section presents the novel approach which estimate
the total disturbance d in an unbiased minimum-variance
sense. First, the disturbance estimate using the UKF is
presented. Then, a simplified UKF is proposed to reduce
the sigma point calculation. Finally, a novel adaptive UKF
is proposed.

A. Process and measurement models for disturbance estima-
tion

To use the UKF for disturbance estimate, the process and
measurement models need to be presented first. The process
model can be readily obtained from the system dynamics
model denoted in Eq. (4). Let the state of the filter be

x = [x1,x2,x3]T (5)



with x1 = q,x2 = q̇,x3 = d. Then the process model can
be given as follows:

ẋ = f + gu+ Ewd (6)

where

f =

 x2

−M−1(C + G) + d
0

 (7)

g =

 0
M−1

0

 ,E =

0I
I

 ,u = τ (8)

Note here we model the dynamics of d as a random walk
process [23]. wd is a white noise sequence with zero mean
and covariance Qd with E{wd,kw

T
d,l} = Qdδkl.

The measurement model can be obtained based on the
available sensors. In our work, only joint angle sensors and
torque sensors are available. Therefore, the measurement
model can be given by:

ym = h(x) + v = x1 + v (9)
= [I,0,0]x+ v (10)
:= Hx+ v (11)

where v is the measurement noise vector which is assumed to
be a white noise with covariance R defined by E{vkvTl } =
Rδkl. R is determined by the sensors (joint encoders).

B. Disturbance estimation using UKF

At time step k, the estimate using the UKF can be done
through the following steps:

1) Sigma points calculation

Xk−1 = [x̂k−1, x̂k−1 − γ
√
Pk−1, x̂k−1 + γ

√
Pk−1]

(12)

where Xi,k−1 are the sigma points of the states x (with
dimension n = 3nd) at step k − 1. γ =

√
n+ λ. λ =

α2(n + κ) − n with κ = 0, α = 0.8 and β = 2.
x̂k−1 and Pk−1 are the state estimation and its error
covariance matrix at time step k − 1.

2) Time update
After the calculation of the sigma points, the predicted
mean x̂k|k−1 and its error covariance matrix Pk|k−1
are computed as follows:

X ∗i,k|k−1 = Xi,k−1 +

∫ tk

tk−1

f(Xi,k−1,u(τ), τ)dτ

(13)

x̂k|k−1 =

2n∑
i=0

W
(m)
i X ∗i,k|k−1 (14)

Pk|k−1 = Qc + P ∗k|k−1 (15)

where

P ∗k|k−1 =
2n∑
i=0

W
(c)
i [X ∗i,k|k−1 − x̂k|k−1][X ∗i,k|k−1 −

x̂k|k−1]T ). x̂k|k−1 and Pk|k−1 are the predicted state
and its error covariance matrix. Qc =

∫ tk
tk−1

EQdE
T dt

and is approximated by EQdE
T ∆t where ∆t = tk −

tk−1. Redraw sigma points as follows1

Xk|k−1 =

[x̂k|k−1, x̂k|k−1 − γ
√
Pk|k−1, x̂k|k−1 + γ

√
Pk|k−1]

(16)

then

Yi,k|k−1 = h(Xi,k|k−1) (17)

ŷk =

2n∑
i=0

W
(m)
i Yi,k|k−1 (18)

Pxy,k =

2n∑
i=0

W
(c)
i [Xi,k|k−1 − x̂k|k−1][Yi,k|k−1 − ŷk]T

(19)

Pyy,k =

2n∑
i=0

W
(c)
i [Yi,k|k−1 − ŷk][Yi,k|k−1 − ŷk]T + R

(20)

W
(m)
i and W

(c)
i , which are the weights associated

with the ith point with respect to x̂k−1 and Pk−1, are
calculated according to [24].

3) Measurement update

Kk = Pxy,kP
−1
yy,k (21)

γk = ym,k − ŷk (22)
x̂k = x̂k|k−1 + Kkγk (23)

Pk = Pk|k−1 −KkPyy,kK
T
k (24)

where ym,k is the measurement at time step k. γk is the
innovation and Kk is the Kalman gain of the filter. x̂k

and Pk are the final state estimate and estimation error
covariance matrix. They are used as the prior knowledge for
the next time step (k + 1) as in Eq. (12).

C. Disturbance estimation using Simplified UKF

The UKF is less sensitive to initialization errors and
linearization errors unlike its counterpart Extended Kalman
Filter (EKF). Furthermore, the UKF does not require the
linearization of the system matrices while the EKF must
calculate the Jacobian matrices of the system models. How-
ever, the UKF requires the calculation of sigma points. In
this section, we will reduce the calculation of sigma points
to simplify the UKF.

Due to the fact that the measurement model is linear,
Eq. (17) can be written as:

Yi,k|k−1 = HXi,k|k−1 (25)

Similarly, Eq. (18) can be written as:

ŷk =

2n∑
i=0

W
(m)
i HXi,k|k−1 (26)

1See Page 233 of [24]



Note that the mean of the redrawn sigma points Xk|k−1 is
still x̂k|k−1. Therefore, Eq. (26) reduces to

ŷk = Hx̂k|k−1 (27)

Substituting Eq. (25) and (27) into Eq. (19), we obtain

Pxy,k =

2n∑
i=0

W
(c)
i [Xi,k|k−1 − x̂k|k−1][Xi,k|k−1 − x̂k|k−1]THT

(28)

Since
2n∑
i=0

W
(c)
i [Xi,k|k−1−x̂k|k−1][Xi,k|k−1−x̂k|k−1]T is the

covariance matrix of sigma points Xk|k−1, Eq. (28) reduces
to

Pxy,k = Pk|k−1H
T (29)

Likewise, Eq. (20) reduces to

Pyy,k = HPk|k−1H
T + R (30)

Now, we can give the simplifications to the UKF:

Simplifications for the UKF
Replace Eqs. (16)-(20) with
Eqs. (27), (29) and (30).

Eqs. (27), (29) and (30) have the same form as that of the
EKF. This is reasonable since our measurement model is
linear and there is no need to calculate the sigma points
to approximate the nonlinear function. The benefits of the
simplifications are as follows:

1) Fewer calculations of sigma points. The sigma points
calculations for the measurement model and covariance
matrices are removed.

2) Free of linearization or derivatives. The EKF requires
the linearization of the system matrices f to get
its derivative with respect to x. In this paper, the
dimension of x is 3nd with nd the number of DOF.
As these derivatives are difficult to derive analyti-
cally, numerical differentiation and auto-differentiation
methods are usually used to reduce the computational
load. In contrast, the UKF does not need any of this.

Based on these benefits, the simplified UKF seems to be a
more suitable choice than the EKF. In the following section,
we will also make use of this simplified UKF to derive the
Adaptive Unscented Kalman Filter (AUKF).

D. Novel Adaptive Unscented Kalman Filter

Since the dynamics of d is unknown, it is modeled as a
random walk process driven by the covariance matrix Qd.
Therefore, the choice of Qd is of critical importance. Due to
the unknown behavior of d, it is difficult to determine Qd.
An ad hoc solution is to manually tune it in simulation and
then apply it in practice. We will propose a novel method to
adaptively update Qd.

Substituting Eq. (15) into Eq.(30), the innovation covari-
ance matrix Pyy,k is expressed as:

H(Qc + P ∗k|k−1)HT + R (31)

The actual innovation covariance can be approximated by:

Ĉk =
1

N

k∑
j=k−N+1

γjγ
T
j (32)

where γj is defined in Eq. (22). It should be noted that if the
angular rates q̇ are also measured, H = [I, I,0]T , we can
obtain the following based on the matching of the innovation
covariances:

HEQdE
THT ∆t = Ĉk −HP ∗k|k−1H

T −R. (33)

Although H and E are not directly invertible, HE = I is
invertible. Consequently, the left side of Eq. (33) is simplified
into Qd∆t and Qd is obtained as:

Qd = (Ĉk −HP ∗k|k−1H
T −R)/∆t. (34)

However, in our experiments, there are no available sensors
to measure q̇ and we can only approximate Qd by Eq. (34).
It will be illustrated by simulations and experiments that this
approximation can achieve satisfactory results.

By now all the parameters for the UKF have been deter-
mined and the unbiased disturbance estimates at time step k
are obtained by x̂2nd+1:3nd,k.

IV. MODEL-BASED CONTROLLER DESIGN

In this section, we will present the model-based controller
without and with the disturbance rejection.

A. Controller without disturbance rejection
In this subsection, we assume d = 0, which means we do

not consider the disturbances. The control law is designed
based on inverse dynamics control, also known as computed
torque control [5], [6], [8].

Define the tracking error vector e as e = q−qdes and the
derivative of e as ė = q̇ − q̇des where the subscript “des”
denotes the desired reference command. The control law is
designed as follows:

τ = C + G + M(q̈des −KDė−KPe) (35)

where KP and KD are the proportional and derivative gains.

B. Controller with disturbance rejection
The control law with disturbance rejection is designed as

follows:

τ = C + G + M(q̈des −KDė−KPe− d̂) (36)

where d̂ is the estimate of d.
The block diagram of the control system is shown in

Fig. 2. The reference block provides the information of the
desired reference qdes, q̇des and q̈des. It is seen from the
block diagram that the AUKF takes the torque command and
the sensor measurements as input. The output of the AUKF,
which is the unbiased estimate of d, is fed to the controller
to attenuate the effect of d based on control law Eq. (36).
The performance of this approach will be validated in the
following sections.
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Fig. 2: Block diagram of the disturbance rejection controller.
The reference block provides the desired reference com-
mands qdes, q̇des and q̈des which are used by the control
law Eq. (36).
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Fig. 3: Tracking of qdes using the controller without and with
disturbance rejection.

V. SIMULATION RESULTS

In this section, the tracking performance of the proposed
method will be validated. Different validation platforms are
used to test the generality to various systems.

A. A hydraulic arm-HyA

The robotic arm (shown in Fig. 1) has 6 DOF and
each joint is driven by a hydraulic actuator. The joints are
numbered from the shoulder to the wrist. A more detailed
description of the design can be found in [1]. Although
the bandwidths of the valves are high, the bandwidths of
the closed-loop low-level actuator controllers are low[25]. In
addition, there are significant friction forces in the actuators,
which lead to the biases and delays in the actuator responses.
We model this effect in a Gazebo simulation and use our pro-
posed controller to deal with this issue. More specifically, we
model the dynamics of the actuators as second-order low pass
filters with damping ratio of 0.8 and natural frequency of 250
rad/s. Furthermore, we add biases ([5, 10, 4, 4, 2, 2]TNm) to
the six actuators.

Fig. 3 shows the tracking performance using the con-
trollers without and with disturbance rejection. It is seen that
the controller without disturbance rejection is not able to
follow the reference. There are biases in the tracking due
to the added biases in the actuators. On the contrary, the
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Fig. 4: Estimate of d using the AUKF for the HyA simula-
tion. Note that the unit of d is rad/s2.

controller with disturbance rejection converges to the de-
sired reference closely. This demonstrates that the proposed
controller can handle disturbances caused by the imperfect
actuator dynamics.

The estimated disturbances for each joints are shown in
Fig. 4. The added biases are constant but the estimated total
disturbances are time-varying because the total disturbances
also estimate the uncertainties caused by the actuator dynam-
ics. These time-varying disturbances indeed pose a challenge
to most model-based control approaches. Note that the unit
of d is not Nm but rad/s2. It is straightforward to derive the
disturbance in terms of torque by multiplying d with M.

B. A hydraulic quadrupedal robot-HyQ

This test is performed on a more complex robot: a
quadrupedal robot [26], [25]. This robot has four legs
(Left Front (LF), Left Hind (LH), Right Front (RF), Right
Hind (RH)), each with three DOF (hip abduction/adduction
(HAA), hip flexion/extension (HFE), knee flexion/extension
(KFE) respectively). Taking the base position and orientation
into consideration, there are 12 more DOF. In this section,
we only consider the joint space control and we consider
the force from the base and contact forces as external
disturbances. This results in significant disturbances into the
joint space system model as shown in Eq. (1). The controlled
variables are the joint angular positions and velocities. The
control task is that knee joints have to follow a sine trajectory
while other joints maintain their positions. The simulation
is performed in SL [27] which is a software package for
complex rigid-body dynamics simulations.

To demonstrate the disturbance rejection performance of
our approach, we add additional disturbances to each joint.
For all the hip joints, the added torque disturbances are 10
Nm. The added disturbances to front knee joints are −50
Nm while those added to hind knee joints are 50 Nm.

Both controllers are tested when there are no additional
disturbances and they are both working. The one with distur-
bance rejection has a better tracking performance. The reason
is that the base gravity and contact forces bring unmodelled
dynamics and are compensated by the disturbance estimate.



Fig. 5: Left and right subfigures show the results of using
the controllers without and with disturbance rejection respec-
tively. It is seen that hind knee joints of left subfigure drop.
The knee joints go out of range and triggered the emergence
stop. The right subfigure finished the task successfully.
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Fig. 6: Tracking of qdes using the controller with disturbance
rejection for the HyQ simulation.

Then two controllers are tested with the additional dis-
turbances added to each joint. The knee joints of using the
controller without disturbance rejection go out of range and
triggered the emergence stop, which is shown in the left
subfigure of Fig. 5.

Contrarily, the controller with disturbance rejection suc-
cessfully finished the task (shown in right subfigure of
Fig. 5). The joint position tracking is shown in Fig. 6.
The disturbance estimates are shown in Fig. 7. It can be
observed that the disturbances are of big magnitudes, which
result in the poor performance using the controller without
disturbance rejection. However, the purpose of adding such
big torque disturbances is to test when the controller with-
out disturbance rejection will fail to work while the other
controller still works well.

VI. EXPERIMENTAL RESULTS

In this section, we apply our approach to our Hydraulic
arm (HyA) hardware. Currently an inverse dynamics con-
troller (control law Eq. (35)) with large PID gains is im-
plemented to cope with the significant disturbance in the
actuators. In this section, we test our new approach (control
law Eq. (36) with AUKF) on this robotic arm. In the
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Fig. 7: Estimate of d (units in rad/s2) using the AUKF for
the HyQ simulation.
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Fig. 8: Tracking of qdes using the controller without and
with disturbance rejection during the HyA experiments, with
gains in (37).

experiments, the following gains are used:

KP = diag(65, 60, 50, 60, 35, 35),

KD = diag(4, 4, 3.5, 3.5, 2, 2) (37)

It should be noted that the gains are tuned first in simulation
and then tuned in real hardware. KD is tuned relatively
smaller to avoid magnifying the noise effect.

A. Experiments in the case of unmodeled actuator dynamics

The task of this experiment is that each joint has to follow
a sine trajectory. The main disturbances include friction
forces and unmodeled actuator dynamics. First, the results
of the control laws (35) and (36) using the above gains
are shown in Fig. 8. It is seen that the controller with
disturbance rejection can track the reference closely while
the other controller can not. For joint 1 using the one without
compensation, it is stuck at -1.4 rad during 3 < t < 7 s and
23 < t < 27 s. The possible cause is the large friction force
which limits the motion of the joint. The absolute tracking
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Fig. 9: Comparison of |e| using the controller without and
with disturbance rejection during the HyA experiments.

TABLE I: Comparison of root-mean squared tracking errors

e1 e2 e3 e4 e5 e6
Without rejection 0.106 0.055 0.077 0.062 0.138 0.047

High gain 0.046 0.032 0.031 0.025 0.059 0.022
[16] 0.043 0.021 0.028 0.020 0.023 0.018
[28] 0.041 0.018 0.023 0.015 0.020 0.014

With rejection 0.031 0.010 0.011 0.010 0.016 0.011

errors of the two controllers are compared in Fig. 9. The
absolute tracking errors using the controller with disturbance
rejection are nearly always significantly smaller than the
other controller.

The estimated d using the AUKF are shown in Fig. 10. It
should be noted that the units of d is rad/s2 instead of Nm. It
is seen that the shape of d resembles that of the joint motion.
Some oscillations are observed related to the last two joints.
That is caused by the actuators whose closed-loop bandwidth
is significantly reduced with low load.

To demonstrate the superiority of the proposed approach,
we compare with three more approaches: one is control
law (35) with high gains which are three times of those
in (37) and the other one proposed in [16] and [28]. The
first one (high gain) is usually used in control of hydraulic
robots to cope with low tracking performance of hydraulic
actuators. The one in [28] is a recently-developed method
which shows advantages over most existing robust controllers
or disturbance observer-based approaches in the presence
of sensor noise (see [28] for more details). The root-mean
squared errors (RMSE) of the tracking is shown in Table I.
As seen, the tracking performance of the proposed approach
outperforms the high-gain inverse dynamics control as well
as the one in [16] and [28]. The reason why the one in [28]
performs slightly worse is that it uses low pass filters which
introduce delays in the disturbance estimate.

B. Experiments in the case of external disturbances

The approach is also tested in real hardware by abruptly
dropping a weight to the end effector. Snapshots of using
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Fig. 10: Estimate of d (units in rad/s2) using the AUKF
during the HyA experiments.

(a) Without disturbance rejection,
before dropping the weight.

(b) Without disturbance rejection,
after dropping the weight.

(c) With disturbance rejection,
before dropping the weight.

(d) With disturbance rejection,
after dropping the weight.

Fig. 11: Snapshots of the end effector positions.

the controller without disturbance rejection before and after
dropping the weight are shown in Figs. 11a and 11b while
those of using the controller with disturbance rejection are
shown in Figs. 11c and 11d. It is observed that the end effec-
tor using the controller with disturbance rejection maintains
its position while that using the other controller does not.

The tracking using the two controllers are shown in
Fig. 12. The position of joint 2 and 4 using the one without
disturbance rejection both drop after the weight is dropped
to the end effector. Using the AUKF, the disturbances caused
by the dropped weight are estimated (shown in Fig. 13). Note
that the disturbance are multiplied with M for understanding
how much torque are caused by the disturbance. A number
of experiments are performed and the results are all similar.
For instance, we also performed adding a weight while each
joint has to follow a sine reference. Interested readers could
refer to the video2 for more details.

2https://youtu.be/vbLFAUgVE8A
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Fig. 12: Tracking of qdes using the controller without and
with disturbance rejection during the HyA experiments with
external disturbances, with gains in (37).
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Fig. 13: Estimated Md (Nm) using the AUKF during the
HyA experiments with external disturbances. The dropped
weight introduced additional unknown torques. For instance,
the total torque disturbance in joint 2 changes from 4.8 Nm
to -4.8 Nm due to the added weight.

VII. CONCLUSIONS

This paper proposed a novel disturbance rejection control
method for hydraulic robots. It takes model uncertainties and
external disturbances into account. A novel Adaptive Un-
scented Kalman Filter was proposed to achieve an unbiased
minimum-variance estimate of the total disturbance in real
time even in the presence of sensor noise. Extensive experi-
ments have demonstrated the superior tracking performance
of the proposed approach over existing approaches.

The proposed approach can be readily extended to other
robotic platforms. This approach can also be extended to
design the internal force controller for hydraulic actuators.
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